Advertisement
FULL-LENGTH ARTICLE | Translational Research| Volume 24, ISSUE 3, P291-301, March 2022

Download started.

Ok

Coupling programmed cell death 1-positive tumor-infiltrating T cells with anti-programmed cell death 1 antibody improves the efficacy of adoptive T-cell therapy

  • Jiacheng Chu
    Affiliations
    Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
    Search for articles by this author
  • Chenya Wang
    Affiliations
    Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
    Search for articles by this author
  • Qingle Ma
    Affiliations
    Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
    Search for articles by this author
  • Huaxing Dai
    Affiliations
    Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
    Search for articles by this author
  • Jialu Xu
    Affiliations
    Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
    Search for articles by this author
  • Edikan A. Ogunnaike
    Affiliations
    Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
    Search for articles by this author
  • Fei Peng
    Affiliations
    Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
    Search for articles by this author
  • Xiaolin Shi
    Affiliations
    Medical College of Soochow University, Suzhou, China
    Search for articles by this author
  • Chao Wang
    Correspondence
    Correspondence: Dr. Chao Wang, Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
    Affiliations
    Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
    Search for articles by this author
Published:October 21, 2021DOI:https://doi.org/10.1016/j.jcyt.2021.08.004

Abstract

Background aims

Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) has shown great success in clinical trials. Programmed cell death 1 (PD-1)-expressing TILs show high specificity to autologous tumor cells. However, limited therapeutic efficiency is observed as a result of the tumor immune microenvironment (TIME).

Methods

Coupling PD-1+ ex vivo-derived TILs with a monoclonal antibody against anti-PD-1 (aPD-1) reinvigorated the anti-tumor response of TILs against solid tumor without altering their high tumor targeting ability.

Results

Using a melanoma-bearing mouse model, PD-1+ TILs blocked with aPD-1 (PD-1+ TILs-aPD-1) exhibited a high capability for tumor targeting as well as improved anti-tumor response in TIME. Tumor growth was substantially delayed in the mice treated with PD-1+ TILs-aPD-1.

Conclusions

The strategy utilizing TIL therapy coupled with immune checkpoint antibodies may extend to other therapeutic targets of ACT.

Keywords

To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
One-time access price info
  • For academic or personal research use, select 'Academic and Personal'
  • For corporate R&D use, select 'Corporate R&D Professionals'

Subscribe:

Subscribe to Cytotherapy
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Rosenberg S.A.
    • Restifo N.P.
    Adoptive cell transfer as personalized immunotherapy for human cancer.
    Science. 2015; 348: 62-68
    • Houot R.
    • Schultz L.M.
    • Marabelle A.
    • Kohrt H.
    T-cell-based immunotherapy: adoptive cell transfer and checkpoint inhibition.
    Cancer immunology research. 2015; 3: 1115-1122
    • Stevanović S.
    • Helman S.R.
    • Wunderlich J.R.
    • Langhan M.M.
    • Doran S.L.
    • Kwong M.L.M.
    • Somerville R.P.
    • Klebanoff C.A.
    • Kammula U.S.
    • Sherry R.M.
    A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus–associated epithelial cancers.
    Clinical Cancer Research. 2019; 25: 1486-1493
    • Goff S.L.
    • Dudley M.E.
    • Citrin D.E.
    • Somerville R.P.
    • Wunderlich J.R.
    • Danforth D.N.
    • Zlott D.A.
    • Yang J.C.
    • Sherry R.M.
    • Kammula U.S.
    Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma.
    Journal of Clinical Oncology. 2016; 34: 2389
    • Rohaan M.W.
    • van den Berg J.H.
    • Kvistborg P.
    • Haanen J.B.
    Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option.
    Journal for immunotherapy of cancer. 2018; 6: 1-16
    • Ben-Avi R.
    • Farhi R.
    • Ben-Nun A.
    • Gorodner M.
    • Greenberg E.
    • Markel G.
    • Schachter J.
    • Itzhaki O.
    • Besser M.J.
    Establishment of adoptive cell therapy with tumor infiltrating lymphocytes for non-small cell lung cancer patients.
    Cancer Immunology, Immunotherapy. 2018; 67: 1221-1230
    • Ma W.
    • Wang Y.
    • Zhang R.
    • Yang F.
    • Zhang D.
    • Huang M.
    • et al.
    Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma.
    Nature Cancer. 2020; 2: 83-97
    • Hu Z.
    • Leet D.E.
    • Allesøe R.L.
    • Oliveira G.
    • Li S.
    • Luoma A.M.
    • et al.
    Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma.
    Nature Medicine. 2021; 27: 515-525
    • Zacharakis N.
    • Chinnasamy H.
    • Black M.
    • Xu H.
    • Lu Y.-C.
    • Zheng Z.
    • Pasetto A.
    • Langhan M.
    • Shelton T.
    • Prickett T.
    Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer.
    Nature medicine. 2018; 24: 724-730
    • Stevanović S.
    • Pasetto A.
    • Helman S.R.
    • Gartner J.J.
    • Prickett T.D.
    • Howie B.
    • Robins H.S.
    • Robbins P.F.
    • Klebanoff C.A.
    • Rosenberg S.A.
    Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer.
    Science. 2017; 356: 200-205
    • Simoni Y.
    • Becht E.
    • Fehlings M.
    • Loh C.Y.
    • Koo S.-L.
    • Teng K.W.W.
    • Yeong J.P.S.
    • Nahar R.
    • Zhang T.
    • Kared H.
    Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates.
    Nature. 2018; 557: 575-579
    • Scheper W.
    • Kelderman S.
    • Fanchi L.F.
    • Linnemann C.
    • Bendle G.
    • de Rooij M.A.
    • Hirt C.
    • Mezzadra R.
    • Slagter M.
    • Dijkstra K.
    Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers.
    Nature medicine. 2019; 25: 89-94
    • Lopez de Rodas M.
    • Schalper K.A.
    Tumour antigen-induced T cell exhaustion – the archenemy of immune-hot malignancies.
    Nature Reviews Clinical Oncology. 2021; https://doi.org/10.1038/s41571-021-00562-5
    • Etxeberria I.
    • Bolaños E.
    • Quetglas J.I.
    • Gros A.
    • Villanueva A.
    • Palomero J.
    • Sánchez-Paulete A.R.
    • Piulats J.M.
    • Matias-Guiu X.
    • Olivera I.
    Intratumor adoptive transfer of IL-12 mRNA transiently engineered antitumor CD8+ T cells.
    Cancer Cell. 2019; 36: 613-629.e7
    • Ye Q.
    • Song D.-G.
    • Poussin M.
    • Yamamoto T.
    • Best A.
    • Li C.
    • Coukos G.
    • Powell D.J.
    CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor.
    Clinical Cancer Research. 2014; 20: 44-55
    • Ahmadzadeh M.
    • Johnson L.A.
    • Heemskerk B.
    • Wunderlich J.R.
    • Dudley M.E.
    • White D.E.
    • Rosenberg S.A.
    Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired.
    Blood. 2009; 114: 1537-1544
    • Baitsch L.
    • Baumgaertner P.
    • Devêvre E.
    • Raghav S.K.
    • Legat A.
    • Barba L.
    • Wieckowski S.
    • Bouzourene H.
    • Deplancke B.
    • Romero P.
    Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients.
    The Journal of clinical investigation. 2011; 121: 2350-2360
    • Syn N.L.
    • Teng M.W.
    • Mok T.S.
    • Soo R.A.
    De-novo and acquired resistance to immune checkpoint targeting.
    The Lancet Oncology. 2017; 18: e731-e741
    • Sharpe A.H.
    • Pauken K.E.
    The diverse functions of the PD1 inhibitory pathway.
    Nature Reviews Immunology. 2018; 18: 153
    • Gros A.
    • Robbins P.F.
    • Yao X.
    • Li Y.F.
    • Turcotte S.
    • Tran E.
    • Wunderlich J.R.
    • Mixon A.
    • Farid S.
    • Dudley M.E.
    PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors.
    The Journal of clinical investigation. 2014; 124: 2246-2259
    • Joyce J.A.
    • Fearon D.T.
    T cell exclusion, immune privilege, and the tumor microenvironment.
    Science. 2015; 348: 74-80
    • Zou W.
    • Wolchok J.D.
    • Chen L.
    PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations.
    Science translational medicine. 2016; 8: 328rv4
    • Boyman O.
    • Sprent J.
    The role of interleukin-2 during homeostasis and activation of the immune system.
    Nature Reviews Immunology. 2012; 12: 180-190
    • Raeber M.E.
    • Rosalia R.A.
    • Schmid D.
    • Karakus U.
    • Boyman O.
    Interleukin-2 signals converge in a lymphoid–dendritic cell pathway that promotes anticancer immunity.
    Science Translational Medicine. 2020; 12: eaba5464
    • Liu G.
    • Zhao X.
    • Zhang Y.
    • Xu J.
    • Xu J.
    • Li Y.
    • Min H.
    • Shi J.
    • Zhao Y.
    • Wei J.
    Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity.
    Advanced Materials. 2019; 311900795
    • Tang L.
    • Zheng Y.
    • Melo M.B.
    • Mabardi L.
    • Castaño A.P.
    • Xie Y.-Q.
    • Li N.
    • Kudchodkar S.B.
    • Wong H.C.
    • Jeng E.K.
    Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery.
    Nature biotechnology. 2018; 36: 707-716
    • Wang C.
    • Sun W.
    • Ye Y.
    • Hu Q.
    • Bomba H.N.
    • Gu Z.
    In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy.
    Nature Biomedical Engineering. 2017; 1: 1-10
    • Han X.
    • Chen J.
    • Chu J.
    • Liang C.
    • Ma Q.
    • Fan Q.
    • Liu Z.
    • Wang C.
    Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody.
    Journal of Controlled Release. 2019; 304: 233-241
    • Yin H.
    • Guo W.
    • Sun X.
    • Li R.
    • Feng C.
    • Tan Y.
    TILs and anti-PD1 therapy: an alternative combination therapy for PDL1 negative metastatic cervical cancer.
    Journal of Immunology Research. 2020; 2020: 8345235
    • Fernandez-Poma S.M.
    • Salas-Benito D.
    • Lozano T.
    • Casares N.
    • Riezu-Boj J.-I.
    • Mancheño U.
    • Elizalde E.
    • Alignani D.
    • Zubeldia N.
    • Otano I.
    Expansion of tumor-infiltrating CD8+ T cells expressing PD-1 improves the efficacy of adoptive T-cell therapy.
    Cancer research. 2017; 77: 3672-3684
    • Fan Q.
    • Ma Q.
    • Bai J.
    • Xu J.
    • Fei Z.
    • Dong Z.
    • Maruyama A.
    • Leong K.W.
    • Liu Z.
    • Wang C.
    An implantable blood clot–based immune niche for enhanced cancer vaccination.
    Science Advances. 2020; 6: eabb4639
    • Han X.
    • Shen S.
    • Fan Q.
    • Chen G.
    • Archibong E.
    • Dotti G.
    • Liu Z.
    • Gu Z.
    • Wang C.
    Red blood cell–derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy.
    Science advances. 2019; 5: eaaw6870
    • Ma Q.
    • Fan Q.
    • Xu J.
    • Bai J.
    • Han X.
    • Dong Z.
    • Zhou X.
    • Liu Z.
    • Gu Z.
    • Wang C.
    Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles.
    Matter. 2020; 3: 287-301
    • Nguyen L.T.
    • Ohashi P.S.
    Clinical blockade of PD1 and LAG3—potential mechanisms of action.
    Nature Reviews Immunology. 2015; 15: 45-56
    • Xu H.
    • Li X.
    • Liu D.
    • Li J.
    • Zhang X.
    • Chen X.
    • Hou S.
    • Peng L.
    • Xu C.
    • Liu W.
    Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility.
    Nature. 2013; 496: 523-527
    • Tran E.
    • Robbins P.F.
    • Lu Y.-C.
    • Prickett T.D.
    • Gartner J.J.
    • Jia L.
    • Pasetto A.
    • Zheng Z.
    • Ray S.
    • Groh E.M.
    T-cell transfer therapy targeting mutant KRAS in cancer.
    New England Journal of Medicine. 2016; 375: 2255-2262
    • Forget M.-A.
    • Haymaker C.
    • Hess K.R.
    • Meng Y.J.
    • Creasy C.
    • Karpinets T.
    • Fulbright O.J.
    • Roszik J.
    • Woodman S.E.
    • Kim Y.U.
    Prospective analysis of adoptive TIL therapy in patients with metastatic melanoma: response, impact of anti-CTLA4, and biomarkers to predict clinical outcome.
    Clinical Cancer Research. 2018; 24: 4416-4428
    • Besser M.J.
    • Itzhaki O.
    • Ben-Betzalel G.
    • Zippel D.B.
    • Zikich D.
    • Kubi A.
    • Brezinger K.
    • Nissani A.
    • Levi M.
    • Zeltzer L.a.
    Comprehensive single institute experience with melanoma TIL: Long term clinical results, toxicity profile, and prognostic factors of response.
    Molecular carcinogenesis. 2020; 59: 736-744
    • Topalian S.L.
    • Drake C.G.
    • Pardoll D.M.
    Immune checkpoint blockade: a common denominator approach to cancer therapy.
    Cancer cell. 2015; 27: 450-461
    • Fang L.
    • Ly D.
    • Wang S.-s.
    • Lee J.B.
    • Kang H.
    • Xu H.
    • Yao J.
    • Tsao M.-s.
    • Liu W.
    • Zhang L.
    Targeting late-stage non-small cell lung cancer with a combination of DNT cellular therapy and PD-1 checkpoint blockade.
    Journal of Experimental & Clinical Cancer Research. 2019; 38: 1-14
View full text