Advertisement
FULL-LENGTH ARTICLE | Basic Research| Volume 24, ISSUE 3, P262-271, March 2022

Download started.

Ok

Endothelial nitric oxide synthase-engineered mesenchymal stromal cells induce anti-inflammation in experimental immune models

Published:November 23, 2021DOI:https://doi.org/10.1016/j.jcyt.2021.10.001

Abstract

Background aims

Mesenchymal stromal cells (MSCs) remain an area of interest in the field of regenerative medicine. Although there is clear evidence of safety, a lack of substantial efficacy has led to many MSC-based clinical trials to stall in phase 1. Therefore, potentiating MSCs with biologically relevant messenger RNA (mRNA) transcripts presents a relatively safe and efficient way to increase functionality.

Methods

In this study, human bone marrow-derived MSCs were transfected with endothelial nitric oxide synthase (eNOS) mRNA and evaluated for transfection efficiency and immunosuppressive ability. To assess MSC-eNOS functionality, T-cell proliferation assays and mouse models of experimental autoimmune encephalomyelitis and graft-versus-host disease were used.

Results

The authors found that MSC-eNOS retained MSC characteristics and exhibited significantly enhanced immunosuppressive effects compared with naive MSCs in both in vitro and in vivo models.

Conclusions

It is feasible to pursue eNOS mRNA transfection to potentiate the immunomodulatory capacity of MSCs for clinical applications in the future.

Key Words

To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
One-time access price info
  • For academic or personal research use, select 'Academic and Personal'
  • For corporate R&D use, select 'Corporate R&D Professionals'

Subscribe:

Subscribe to Cytotherapy
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Wang L.T.
    • Ting C.H.
    • Yen M.L.
    • Liu K.J.
    • Sytwu H.K.
    • Wu K.K.
    • Yen B.L.
    Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials.
    J Biomed Sci. 2016; 23: 76
    • Levy O.
    • Kuai R.
    • Siren E.M.J.
    • Bhere D.
    • Milton Y.
    • Nissar N.
    • De Biasio M.
    • Heinelt M.
    • Reeve B.
    • Abdi R.
    • Alturki M.
    • Fallatah M.
    • Almalik A.
    • Alhasan A.H.
    • Shah K.
    • Karp J.M.
    Shattering barriers toward clinically meaningful MSC therapies.
    Sci Adv. 2020; 6: eaba6884
    • Hacein-Bey-Abina S.
    • Von Kalle C.
    • Schmidt M.
    • McCormack M.P.
    • Wulffraat N.
    • Leboulch P.
    • Lim A.
    • Osborne C.S.
    • Pawliuk R.
    • Morillon E.
    • Sorensen R.
    • Forster A.
    • Fraser P.
    • Cohen J.I.
    • de Saint Basile G.
    • Alexander I.
    • Wintergerst U.
    • Frebourg T.
    • Aurias A.
    • Stoppa-Lyonnet D.
    • Romana S.
    • Radford-Weiss I.
    • Gross F.
    • Valensi F.
    • Delabesse E.
    • Macintyre E.
    • Sigaux F.
    • Soulier J.
    • Leiva L.E.
    • Wissler M.
    • Prinz C.
    • Rabbitts T.H.
    • Le Deist F.
    • Fischer A.
    • Cavazzana-Calvo M.
    LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.
    Science. 2003; 302: 415-419
    • Nowakowski A.
    • Andrzejewska A.
    • Boltze J.
    • Nitzsche F.
    • Cui L.L.
    • Jolkkonen J.
    • Walczak P.
    • Lukomska B.
    • Janowski M.
    Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha-4 integrin expression on human mesenchymal stem cells.
    Sci Rep. 2017; 7: 1103
    • Jiang W.
    • Xu J.
    Immune modulation by mesenchymal stem cells.
    Cell Prolif. 2020; 53: e12712
    • Ren G.
    • Zhang L.
    • Zhao X.
    • Xu G.
    • Zhang Y.
    • Roberts A.I.
    • Zhao R.C.
    • Shi Y.
    Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide.
    Cell Stem Cell. 2008; 2: 141-150
    • Bogdan C.
    Nitric oxide and the regulation of gene expression.
    Trends Cell Biol. 2001; 11: 66-75
    • Guo X.R.
    • Hu Q.Y.
    • Yuan Y.H.
    • Tang X.J.
    • Yang Z.S.
    • Zou D.D.
    • Bian L.J.
    • Dai L.J.
    • Li D.S.
    PTEN-mRNA engineered mesenchymal stem cell-mediated cytotoxic effects on U251 glioma cells.
    Oncol Lett. 2016; 11: 2733-2740
    • Guo X.R.
    • Yang Z.S.
    • Tang X.J.
    • Zou D.D.
    • Gui H.
    • Wang X.L.
    • Ma S.N.
    • Yuan Y.H.
    • Fang J.
    • Wang B.
    • Zhang L.
    • Sun X.Y.
    • Warnock G.L.
    • Dai L.J.
    • Tu H.J.
    The application of mRNA-based gene transfer in mesenchymal stem cell-mediated cytotoxicity of glioma cells.
    Oncotarget. 2016; 7: 55529-55542
    • Rejman J.
    • Tavernier G.
    • Bavarsad N.
    • Demeester J.
    • De Smedt S.C.
    mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers.
    J Control Release. 2010; 147: 385-391
    • Ryser M.F.
    • Ugarte F.
    • Thieme S.
    • Bornhauser M.
    • Roesen-Wolff A.
    • Brenner S.
    mRNA transfection of CXCR4-GFP fusion—simply generated by PCR-results in efficient migration of primary human mesenchymal stem cells.
    Tissue Eng Part C Methods. 2008; 14: 179-184
    • Uchida S.
    • Yanagihara K.
    • Matsui A.
    • Kataoka K.
    • Itaka K.
    mRNA as a Tool for Gene Transfection in 3D Cell Culture for Future Regenerative Therapy.
    Micromachines (Basel). 2020; 11: 426
    • Van Pham P.
    • Thi-My Nguyen P.
    • Thai-Quynh Nguyen A.
    • Minh Pham V.
    • Nguyen-Tu Bui A.
    • Thi-Tung Dang L.
    • Gia Nguyen K.
    • Kim Phan N.
    Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection.
    Differentiation. 2014; 87: 200-208
    • Chen L.
    • Zhang Y.
    • Tao L.
    • Yang Z.
    • Wang L.
    Mesenchymal Stem Cells with eNOS Over-Expression Enhance Cardiac Repair in Rats with Myocardial Infarction.
    Cardiovasc Drugs Ther. 2017; 31: 9-18
    • Deng W.
    • Bivalacqua T.J.
    • Chattergoon N.N.
    • Hyman A.L.
    • Jeter Jr., J.R.
    • Kadowitz P.J.
    Adenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells.
    Am J Physiol Cell Physiol. 2003; 285: C1322-C1329
    • Kanki-Horimoto S.
    • Horimoto H.
    • Mieno S.
    • Kishida K.
    • Watanabe F.
    • Furuya E.
    • Katsumata T.
    Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension.
    Circulation. 2006; 114: I181-I185
    • Maria A.T.J.
    • Rozier P.
    • Fonteneau G.
    • Sutra T.
    • Maumus M.
    • Toupet K.
    • Cristol J.P.
    • Jorgensen C.
    • Guilpain P.
    • Noel D.
    iNOS Activity Is Required for the Therapeutic Effect of Mesenchymal Stem Cells in Experimental Systemic Sclerosis.
    Front Immunol. 2018; 9: 3056
    • Madeira C.
    • Mendes R.D.
    • Ribeiro S.C.
    • Boura J.S.
    • Aires-Barros M.R.
    • da Silva C.L.
    • Cabral J.M.
    Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy.
    J Biomed Biotechnol. 2010; 2010735349
    • Dominici M.
    • Blanc K.Le
    • Mueller I.
    • Slaper-Cortenbach I.
    • Marini F.
    • Krause D.
    • Deans R.
    • Keating A.
    • Prockop D.
    • Horwitz E.
    Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
    Cytotherapy. 2006; 8: 315-317
    • Van Coillie E.
    • Van Damme J.
    • Opdenakker G.
    The MCP/eotaxin subfamily of CC chemokines.
    Cytokine Growth Factor Rev. 1999; 10: 61-86
    • Houchen C.W.
    • George R.J.
    • Sturmoski M.A.
    • Cohn S.M.
    FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury.
    Am J Physiol. 1999; 276: G249-G258
    • Denis C.
    • Deiteren K.
    • Mortier A.
    • Tounsi A.
    • Fransen E.
    • Proost P.
    • Renauld J.C.
    • Lambeir A.M.
    C-terminal clipping of chemokine CCL1/I-309 enhances CCR8-mediated intracellular calcium release and anti-apoptotic activity.
    PLoS One. 2012; 7: e34199
    • Huang P.
    • Gebhart N.
    • Richelson E.
    • Brott T.G.
    • Meschia J.F.
    • Zubair A.C.
    Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation.
    Cytotherapy. 2014; 16: 1336-1344
    • Dufour J.H.
    • Dziejman M.
    • Liu M.T.
    • Leung J.H.
    • Lane T.E.
    • Luster A.D.
    IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking.
    J Immunol. 2002; 168: 3195-3204
    • Brandt C.
    • Pedersen B.K.
    The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases.
    J Biomed Biotechnol. 2010; 2010520258
    • Cirino G.
    • Fiorucci S.
    • Sessa W.C.
    Endothelial nitric oxide synthase: the Cinderella of inflammation?.
    Trends Pharmacol Sci. 2003; 24: 91-95
    • Introna M.
    • Golay J.
    Tolerance to Bone Marrow Transplantation: Do Mesenchymal Stromal Cells Still Have a Future for Acute or Chronic GVHD?.
    Front Immunol. 2020; 11609063
    • Kurte M.
    • Luz-Crawford P.
    • Vega-Letter A.M.
    • Contreras R.A.
    • Tejedor G.
    • Elizondo-Vega R.
    • Martinez-Viola L.
    • Fernandez-O'Ryan C.
    • Figueroa F.E.
    • Jorgensen C.
    • Djouad F.
    • Carrion F.
    IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis.
    Front Immunol. 2018; 9: 802
    • Singh I.
    • Nath N.
    • Saxena N.
    • Singh A.K.
    • Won J.S.
    Regulation of IL-10 and IL-17 mediated experimental autoimmune encephalomyelitis by S-nitrosoglutathione.
    Immunobiology. 2018; 223: 549-554
    • Almolda B.
    • Costa M.
    • Montoya M.
    • Gonzalez B.
    • Castellano B.
    Increase in Th17 and T-reg lymphocytes and decrease of IL22 correlate with the recovery phase of acute EAE in rat.
    PLoS One. 2011; 6: e27473
    • Perriard G.
    • Mathias A.
    • Enz L.
    • Canales M.
    • Schluep M.
    • Gentner M.
    • Schaeren-Wiemers N.
    • Du Pasquier R.A.
    Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes.
    J Neuroinflammation. 2015; 12: 119
    • Ullman-Cullere M.H.
    • Foltz C.J.
    Body condition scoring: a rapid and accurate method for assessing health status in mice.
    Lab Anim Sci. 1999; 49: 319-323
    • Kabat M.
    • Bobkov I.
    • Kumar S.
    • Grumet M.
    Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range?.
    Stem Cells Transl Med. 2020; 9: 17-27
View full text