Advertisement
FULL-LENGTH ARTICLE | Basic Research| Volume 24, ISSUE 3, P282-290, March 2022

Download started.

Ok

Combinatorial antigen targeting strategies for acute leukemia: application in myeloid malignancy

Published:December 23, 2021DOI:https://doi.org/10.1016/j.jcyt.2021.10.007

Abstract

Background aims

Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia-associated antigen with chimeric antigen receptor (CAR) T cells have met with limited success, due in part to heterogeneous expression of myeloid antigens. The authors hypothesized that T cells expressing CARs directed toward two different AML-associated antigens would eradicate tumors and prevent relapse.

Methods

For co-transduction with the authors’ previously optimized CLL-1 CAR currently in clinical study (NCT04219163), the authors generated two CARs targeting either CD123 or CD33. The authors then tested the anti-tumor activity of T cells expressing each of the three CARs either alone or after co-transduction. The authors analyzed CAR T-cell phenotype, expansion and transduction efficacy and assessed function by in vitro and in vivo activity against AML cell lines expressing high (MOLM-13: CD123 high, CD33 high, CLL-1 intermediate), intermediate (HL-60: CD123 low, CD33 intermediate, CLL-1 intermediate/high) or low (KG-1a: CD123 low, CD33 low, CLL-1 low) levels of the target antigens.

Results

The in vitro benefit of dual expression was most evident when the target cell line expressed low antigen levels (KG-1a). Mechanistically, dual expression was associated with higher pCD3z levels in T cells compared with single CAR T cells on exposure to KG-1a (P < 0.0001). In vivo, combinatorial targeting with CD123 or CD33 and CLL-1 CAR T cells improved tumor control and animal survival for all lines (KG-1a, MOLM-13 and HL-60); no antigen escape was detected in residual tumors.

Conclusions

Overall, these findings demonstrate that combinatorial targeting of CD33 or CD123 and CLL-1 with CAR T cells can control growth of heterogeneous AML tumors.

Key Words

To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
One-time access price info
  • For academic or personal research use, select 'Academic and Personal'
  • For corporate R&D use, select 'Corporate R&D Professionals'

Subscribe:

Subscribe to Cytotherapy
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Lee JB
    • Chen B
    • Vasic D
    • Law AD
    • Zhang L.
    Cellular immunotherapy for acute myeloid leukemia: How specific should it be?.
    Blood Rev. 2019; 35: 18-31
    • Song MK
    • Park BB
    • Uhm JE.
    Resistance Mechanisms to CAR T-Cell Therapy and Overcoming Strategy in B-Cell Hematologic Malignancies.
    Int J Mol Sci. 2019; 20: 5010
    • Till BG
    • Jensen MC
    • Wang J
    • Qian X
    • Gopal AK
    • Maloney DG
    CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results.
    Blood. 2012; 119: 3940-3950
    • Ramos CA
    • Ballard B
    • Zhang H
    • Dakhova O
    • Gee AP
    • Mei Z
    • et al.
    Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes.
    J Clin Invest. 2017; 127: 3462-3471
    • Ali SA
    • Shi V
    • Maric I
    • Wang M
    • Stroncek DF
    • Rose JJ
    • et al.
    T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma.
    Blood. 2016; 128: 1688-1700
    • Chung EY
    • Psathas JN
    • Yu D
    • Li Y
    • Weiss MJ
    • Thomas-Tikhonenko A.
    CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis.
    J Clin Invest. 2012; 122: 2257-2266
    • Schanz J
    • Tüchler H
    • Solé F
    • Mallo M
    • Luño E
    • Cervera J
    • et al.
    New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge.
    J Clin Oncol. 2012; 30: 820-829
  1. Kavanagh S, Murphy T, Law A, Yehudai D, Ho JM, Chan S, et al. Emerging therapies for acute myeloid leukemia: translating biology into the clinic. JCI Insight. 2017 Sep 21;2(18):e95679.

    • Perna F
    • Berman SH
    • Soni RK
    • Mansilla-Soto J
    • Eyquem J
    • Hamieh M
    • et al.
    Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML.
    Cancer Cell. 2017; 32: 506-519.e5
    • Fan M
    • Li M
    • Gao L
    • Geng S
    • Wang J
    • Wang Y
    • et al.
    Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia.
    J Hematol Oncol. 2017 Aug 29; 10: 151
    • Hansrivijit P
    • Gale RP
    • Barrett J
    • Ciurea SO.
    Cellular therapy for acute myeloid leukemia—current status and future prospects.
    Blood Rev. 2019; 37100578
    • Barrett DM
    • Teachey DT
    • Grupp SA.
    Toxicity management for patients receiving novel T-cell engaging therapies.
    Curr Opin Pediatr. 2014; 26: 43-49
    • Roybal KT
    • Rupp LJ
    • Morsut L
    • Walker WJ
    • McNally KA
    • Park JS
    • et al.
    Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits.
    Cell. 2016; 164: 770-779
    • Schmidts A
    • Maus MV.
    Making CAR T Cells a Solid Option for Solid Tumors.
    Front Immunol. 2018; 9: 2593
  2. Kailayangiri S, Altvater B, Wiebel M, Jamitzky S, Rossig C. Overcoming Heterogeneity of Antigen Expression for Effective CAR T Cell Targeting of Cancers. Cancers (Basel). 2020 Apr 26;12(5):1075.

    • Morsink LM
    • Walter RB
    • Ossenkoppele GJ.
    Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia.
    Blood Rev. 2019; 34: 26-33
    • Majzner RG
    • Mackall CL.
    Tumor Antigen Escape from CAR T-cell Therapy.
    Cancer Discov. 2018; 8: 1219-1226
    • Petrov JC
    • Wada M
    • Pinz KG
    • Yan LE
    • Chen KH
    • Shuai X
    • et al.
    Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia.
    Leukemia. 2018; 32: 1317-1326
    • Hernandez-Lopez RA
    • Yu W
    • Cabral KA
    • Creasey OA
    • Lopez Pazmino MDP
    • Tonai Y
    • et al.
    T cell circuits that sense antigen density with an ultrasensitive threshold.
    Science. 2021; 371: 1166-1171
    • Gardner R
    • Annesley C
    • Finney O
    • Co Summers
    • Lamble AJ
    • Rivers J
    • et al.
    Early clinical experience of CD19 x CD22 dual specific CAR T cells for enhanced anti-leukemic targeting of acute lymphoblastic leukemia.
    Blood. 2018; 132: 278
    • de Larrea CF
    • Staehr M
    • Lopez AV
    • Ng KY
    • Chen Y
    • Godfrey WD
    • et al.
    Defining an Optimal Dual-Targeted CAR T-cell Therapy Approach Simultaneously Targeting BCMA and GPRC5D to Prevent BCMA Escape-Driven Relapse in Multiple Myeloma.
    Blood Cancer Discov. 2020; 1: 146-154
    • Bakker AB
    • van den Oudenrijn S
    • Bakker AQ
    • Feller N
    • van Meijer M
    • Bia JA
    • et al.
    C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia.
    Cancer Res. 2004 Nov 15; 64: 8443-8450
    • Ataca Atilla P
    • McKenna MK
    • Tashiro H
    • Srinivasan M
    • Mo F
    • Watanabe N
    • et al.
    Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia.
    J Immunother Cancer. 2020; 8e001229
    • O'Hear C
    • Heiber JF
    • Schubert I
    • Fey G
    • Geiger TL.
    Anti-CD33 chimeric antigen receptor targeting of acute myeloid leukemia.
    Haematologica. 2015; 100: 336-344
    • Jilani I
    • Estey E
    • Huh Y
    • Joe Y
    • Manshouri T
    • Yared M
    • et al.
    Differences in CD33 intensity between various myeloid neoplasms.
    Am J Clin Pathol. 2002; 118: 560-566
    • Pardanani A
    • Lasho T
    • Chen D
    • Kimlinger TK
    • Finke C
    • Zblewski D
    • et al.
    Aberrant expression of CD123 (interleukin-3 receptor-α) on neoplastic mast cells.
    Leukemia. 2015; 29: 1605-1608
    • Liu K
    • Zhu M
    • Huang Y
    • Wei S
    • Xie J
    • Xiao Y.
    CD123 and its potential clinical application in leukemias.
    Life Sci. 2015; 122: 59-64
    • Ehninger A
    • Kramer M
    • Röllig C
    • Thiede C
    • Bornhäuser M
    • von Bonin M
    • et al.
    Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia.
    Blood Cancer J. 2014; 4: e218
  3. Tashiro H, Sauer T, Shum T, Parikh K, Mamonkin M, Omer B, et al. Treatment of Acute Myeloid Leukemia with T Cells Expressing Chimeric Antigen Receptors Directed to C-type Lectin-like Molecule 1. Mol Ther. 2017 Sep 6;25(9):2202-2213.

    • Ataca Atilla P
    • McKenna MK
    • Watanabe N
    • Mamonkin M
    • Brenner MK
    • Atilla E
    Combinatorial Antigen Targeting Strategy for Acute Myeloid Leukemia.
    Blood. 2020; 136: 22-23
    • Bonifant CL
    • Szoor A
    • Torres D
    • Joseph N
    • Velasquez MP
    • Iwahori K
    • et al.
    CD123-Engager T Cells as a Novel Immunotherapeutic for Acute Myeloid Leukemia.
    Mol Ther. 2016 Sep 29; 24: 1615-1626
    • Haubner S
    • Perna F
    • Köhnke T
    • Schmidt C
    • Berman S
    • Augsberger C
    • et al.
    Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML.
    Leukemia. 2019; 33: 64-74
  4. Timmers M, Roex G, Wang Y, Campillo-Davo D, Van Tendeloo VFI, Chu Y, et al. Chimeric Antigen Receptor-Modified T Cell Therapy in Multiple Myeloma: Beyond B Cell Maturation Antigen. Front Immunol. 2019 Jul 16;10:1613.

    • Akhavan D
    • Alizadeh D
    • Wang D
    • Weist MR
    • Shepphird JK
    • Brown CE.
    CAR T cells for brain tumors: lessons learned and road ahead.
    Immunol Rev. 2019; 290: 60-84
    • Xiong W
    • Chen Y
    • Kang X
    • Chen Z
    • Zheng P
    • Hsu YH
    • et al.
    Immunological Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells.
    Mol Ther. 2018; 26: 963-975
    • Wang QS
    • Wang Y
    • Lv HY
    • Han QW
    • Fan H
    • Guo B
    • et al.
    Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia.
    Mol Ther. 2015; 23: 184-191
    • Liu F
    • Cao Y
    • Pinz K
    • Ma Y
    • Wada M
    • Chen K
    • et al.
    First-in-human CLL1-CD33 compound CAR-T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial.
    Blood. 2018; 132: 901
    • Lee DW
    • Kochenderfer JN
    • Stetler-Stevenson M
    • Cui YK
    • Delbrook C
    • Feldman SA
    • et al.
    T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.
    Lancet. 2015; 385: 517-528
    • Long AH
    • Haso WM
    • Shern JF
    • Wanhainen KM
    • Murgai M
    • Ingaramo M
    • et al.
    4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors.
    Nat Med. 2015; 21: 581-590
    • Gomes-Silva D
    • Murherjee M
    • Srinivasan M
    • Krenciute G
    • Dakhova O
    • Zheng Y
    • et al.
    Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent.
    Cell Rep. 2017 Oct 3; 21: 17-26
    • Maude SL
    • Laetsch TW
    • Buechner J
    • Rives S
    • Boyer M
    • Bittencourt H
    • et al.
    Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia.
    N Engl J Med. 2018 Feb 1; 378: 439-448
    • Gardner RA
    • Finney O
    • Annesley C
    • Brakke H
    • Summers C
    • Leger K
    • et al.
    Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults.
    Blood. 2017 Jun 22; 129: 3322-3331
    • Wang QS
    • Wang Y
    • Lv HY
    • Han QW
    • Fan H
    • Guo B
    • et al.
    Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia.
    Mol Ther. 2015; 23: 184-191
  5. Giles FJ, Kantarjian HM, Kornblau SM, Thomas DA, Garcia-Manero G, Waddelow TA, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer. 2001 Jul 15;92(2):406-13.

    • Kubasch AS
    • Schulze F
    • Giagounidis A
    • Götze KS
    • Krönke J
    • Sockel K
    • et al.
    Single agent talacotuzumab demonstrates limited efficacy but considerable toxicity in elderly high-risk MDS or AML patients failing hypomethylating agents.
    Leukemia. 2020; 34: 1182-1186
    • Marin V
    • Cribioli E
    • Philip B
    • Tettamanti S
    • Pizzitola I
    • Biondi A
    • et al.
    Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells.
    Hum Gene Ther Methods. 2012; 23: 376-386
    • Straathof KC
    • Pulè MA
    • Yotnda P
    • Dotti G
    • Vanin EF
    • Brenner MK
    • et al.
    An inducible caspase 9 safety switch for T-cell therapy.
    Blood. 2005; 105: 4247-4254
    • Foster MC
    • Savoldo B
    • Lau W
    • Rubinos CA
    • Grover N
    • Armistead PM
    • et al.
    Utility of Safety Switch to Abrogate CD19.CAR T Cell-Associated Neurotoxicity.
    Blood. 2021; 232021010784
    • Kim MY
    • Yu KR
    • Kenderian SS
    • Ruella M
    • Chen S
    • Shin TH
    • et al.
    Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia.
    Cell. 2018; 173: 1439-1453.e19
    • Humbert O
    • Laszlo GS
    • Sichel S
    • Ironside C
    • Haworth KG
    • Bates OM
    • et al.
    Engineering resistance to CD33-targeted immunotherapy in normal hematopoiesis by CRISPR/Cas9-deletion of CD33 exon 2.
    Leukemia. 2019; 33: 762-808
View full text