Advertisement
FULL-LENGTH ARTICLE | Basic Research| Volume 24, ISSUE 4, P393-404, April 2022

Download started.

Ok

Identification of alpha-enolase as a potential immunogenic molecule during allogeneic transplantation of human adipose-derived mesenchymal stromal cells

  • Author Footnotes
    ⁎ These authors contributed equally to this work.
    Dongdong Wang
    Footnotes
    ⁎ These authors contributed equally to this work.
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Author Footnotes
    ⁎ These authors contributed equally to this work.
    Yi Fu
    Footnotes
    ⁎ These authors contributed equally to this work.
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Junfen Fan
    Affiliations
    Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
    Search for articles by this author
  • Yue Wang
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Chao Li
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Yi Xu
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Hui Chen
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Yu Hu
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Hongcui Cao
    Affiliations
    State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
    Search for articles by this author
  • Robert Chunhua Zhao
    Correspondence
    Correspondence: Robert Chunhua Zhao, PhD, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing 100005, China.
    Affiliations
    Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
    Search for articles by this author
  • Wei He
    Correspondence
    Correspondence: Wei He, MD, Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China.
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Jianmin Zhang
    Correspondence
    Correspondence: Jianmin Zhang, PhD, Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China.
    Affiliations
    Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
    Search for articles by this author
  • Author Footnotes
    ⁎ These authors contributed equally to this work.
Published:December 02, 2021DOI:https://doi.org/10.1016/j.jcyt.2021.10.004

Abstract

Background aims

Given their low immunogenicity, immunoregulatory effects and multiple differentiation capacity, mesenchymal stromal cells (MSCs) have the potential to be used for “off-the-shelf” cell therapy to treat various diseases. However, the allorejection of MSCs indicates that they are not fully immune-privileged. In this study, the authors investigated the immunogenicity of human adipose-derived MSCs (Ad-MSCs) and identified potential immunogenic molecules.

Methods

To evaluate the immunogenicity of human Ad-MSCs in vivo, cells were transplanted into humanized mice (hu-mice), then T-cell infiltration and clearance of human Ad-MSCs were observed by immunofluorescence and bioluminescence imaging. One-way mixed lymphocyte reaction and flow cytometry were performed to evaluate the immunogenicity of human Ad-MSCs in vitro. High-throughput T-cell receptor (TCR) repertoire sequencing and mass spectrometry were applied to identified potential immunogenic molecules.

Results

The authors observed that allogeneic Ad-MSCs recruited human T cells and caused faster clearance in hu-mice than non-humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The proliferation and activation of T cells were significantly enhanced during in vitro co-culture with human Ad-MSCs. In addition, the level of HLA-II expression on human Ad-MSCs was dramatically increased after co-culture with human peripheral blood mononuclear cells (PBMCs). High-throughput sequencing was applied to analyze the TCR repertoire of the Ad-MSC-recruited T cells to identify dominant TCR CDR3 sequences. Using synthesized TCR CDR3 peptides, the authors identified several potential immunogenic candidates, including alpha-enolase (ENO1). The ENO1 expression level of Ad-MSCs significantly increased after co-culture with PBMCs, whereas ENO1 inhibitor (ENOblock) treatment decreased the expression level of ENO1 and Ad-MSC-induced proliferation of T cells.

Conclusions

The authors’ findings improve the understanding of the immunogenicity of human Ad-MSCs and provide a theoretical basis for the safe clinical application of allogeneic MSC therapy.

Key Words

To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
One-time access price info
  • For academic or personal research use, select 'Academic and Personal'
  • For corporate R&D use, select 'Corporate R&D Professionals'

Subscribe:

Subscribe to Cytotherapy
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Friedenstein A.J.
    • Chailakhyan R.K.
    • Latsinik N.V.
    • Panasyuk A.F.
    • Keiliss-Borok I.V.
    Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo.
    Transplantation. 1974; 17: 331-340
    • Friedenstein A.J.
    • Gorskaja J.F.
    • Kulagina N.N.
    Fibroblast precursors in normal and irradiated mouse hematopoietic organs.
    Exp Hematol. 1976; 4: 267-274
    • Zuk P.A.
    • Zhu M.
    • Mizuno H.
    • Huang J.
    • Futrell J.W.
    • Katz A.J.
    • Benhaim P.
    • Lorenz H.P.
    • Hedrick M.H.
    Multilineage cells from human adipose tissue: implications for cell-based therapies.
    Tissue Eng. 2001; 7: 211-228
    • In 't Anker P.S.
    • Scherjon S.A.
    • Kleijburg-van der Keur C.
    • de Groot-Swings G.M.
    • Claas F.H.
    • Fibbe W.E.
    • Kanhai H.H.
    Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta.
    Stem Cells. 2004; 22: 1338-1345
    • Bieback K.
    • Kern S.
    • Kluter H.
    • Eichler H.
    Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood.
    Stem Cells. 2004; 22: 625-634
    • Dmitrieva R.I.
    • Minullina I.R.
    • Bilibina A.A.
    • Tarasova O.V.
    • Anisimov S.V.
    • Zaritskey A.Y.
    Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities.
    Cell Cycle. 2012; 11: 377-383
    • Raicevic G.
    • Najar M.
    • Stamatopoulos B.
    • De Bruyn C.
    • Meuleman N.
    • Bron D.
    • Toungouz M.
    • Lagneaux L.
    The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties.
    Cell Immunol. 2011; 270: 207-216
    • Prockop D.J.
    Marrow stromal cells as stem cells for nonhematopoietic tissues.
    Science. 1997; 276: 71-74
    • Liew A.
    • O'Brien T.
    Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia.
    Stem Cell Res Ther. 2012; 3: 28
    • Amado L.C.
    • Saliaris A.P.
    • Schuleri K.H.
    • St John M.
    • Xie J.S.
    • Cattaneo S.
    • Durand D.J.
    • Fitton T.
    • Kuang J.Q.
    • Stewart G.
    • Lehrke S.
    • Baumgartner W.W.
    • Martin B.J.
    • Heldman A.W.
    • Hare J.M.
    Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.
    Proc Natl Acad Sci U S A. 2005; 102: 11474-11479
    • Park D.
    • Spencer J.A.
    • Koh B.I.
    • Kobayashi T.
    • Fujisaki J.
    • Clemens T.L.
    • Lin C.P.
    • Kronenberg H.M.
    • Scadden D.T.
    Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration.
    Cell Stem Cell. 2012; 10: 259-272
    • Pumberger M.
    • Qazi T.H.
    • Ehrentraut M.C.
    • Textor M.
    • Kueper J.
    • Stoltenburg-Didinger G.
    • Winkler T.
    • von Roth P.
    • Reinke S.
    • Borselli C.
    • Perka C.
    • Mooney D.J.
    • Duda G.N.
    • Geissler S.
    Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration.
    Biomaterials. 2016; 99: 95-108
    • Larpthaveesarp A.
    • Pathipati P.
    • Ostrin S.
    • Rajah A.
    • Ferriero D.
    • Gonzalez F.F.
    Enhanced Mesenchymal Stromal Cells or Erythropoietin Provide Long-Term Functional Benefit After Neonatal Stroke.
    Stroke. 2021; 52: 284-293
    • Nauta A.J.
    • Fibbe W.E.
    Immunomodulatory properties of mesenchymal stromal cells.
    Blood. 2007; 110: 3499-3506
    • Le Blanc K.
    • Frassoni F.
    • Ball L.
    • Locatelli F.
    • Roelofs H.
    • Lewis I.
    • Lanino E.
    • Sundberg B.
    • Bernardo M.E.
    • Remberger M.
    • Dini G.
    • Egeler R.M.
    • Bacigalupo A.
    • Fibbe W.
    • Ringden O.
    Developmental Committee of the European Group for, T. Marrow, Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study.
    Lancet. 2008; 371: 1579-1586
    • Ben-Ami E.
    • Berrih-Aknin S.
    • Miller A.
    Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases.
    Autoimmun Rev. 2011; 10: 410-415
    • Maria A.T.
    • Maumus M.
    • Quellec A.Le
    • Jorgensen C.
    • Noel D.
    • Guilpain P.
    Adipose-Derived Mesenchymal Stem Cells in Autoimmune Disorders: State of the Art and Perspectives for Systemic Sclerosis.
    Clin Rev Allergy Immunol. 2017; 52: 234-259
    • Hare J.M.
    • Fishman J.E.
    • Gerstenblith G.
    • DiFede Velazquez D.L.
    • Zambrano J.P.
    • Suncion V.Y.
    • Tracy M.
    • Ghersin E.
    • Johnston P.V.
    • Brinker J.A.
    • Breton E.
    • Davis-Sproul J.
    • Schulman I.H.
    • Byrnes J.
    • Mendizabal A.M.
    • Lowery M.H.
    • Rouy D.
    • Altman P.
    • Wong Po Foo C.
    • Ruiz P.
    • Amador A.
    • Da Silva J.
    • McNiece I.K.
    • Heldman A.W.
    • George R.
    • Lardo A.
    Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial.
    JAMA. 2012; 308: 2369-2379
    • Klyushnenkova E.
    • Mosca J.D.
    • Zernetkina V.
    • Majumdar M.K.
    • Beggs K.J.
    • Simonetti D.W.
    • Deans R.J.
    • McIntosh K.R.
    T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression.
    J Biomed Sci. 2005; 12: 47-57
    • Rapp A.E.
    • Bindl R.
    • Erbacher A.
    • Kruchen A.
    • Rojewski M.
    • Schrezenmeier H.
    • Muller I.
    • Ignatius A.
    Autologous Mesenchymal Stroma Cells Are Superior to Allogeneic Ones in Bone Defect Regeneration.
    Int J Mol Sci. 2018; 19: 2526
    • Gupta P.K.
    • Chullikana A.
    • Rengasamy M.
    • Shetty N.
    • Pandey V.
    • Agarwal V.
    • Wagh S.Y.
    • Vellotare P.K.
    • Damodaran D.
    • Viswanathan P.
    • Thej C.
    • Balasubramanian S.
    • Majumdar A.S.
    Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel(R)): preclinical and clinical trial in osteoarthritis of the knee joint.
    Arthritis Res Ther. 2016; 18: 301
    • Vega A.
    • Martin-Ferrero M.A.
    • Del Canto F.
    • Alberca M.
    • Garcia V.
    • Munar A.
    • Orozco L.
    • Soler R.
    • Fuertes J.J.
    • Huguet M.
    • Sanchez A.
    • Garcia-Sancho J.
    Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial.
    Transplantation. 2015; 99: 1681-1690
    • Moll G.
    • Ankrum J.A.
    • Kamhieh-Milz J.
    • Bieback K.
    • Ringden O.
    • Volk H.D.
    • Geissler S.
    • Reinke P.
    Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines.
    Trends Mol Med. 2019; 25: 149-163
    • Ankrum J.A.
    • Ong J.F.
    • Karp J.M.
    Mesenchymal stem cells: immune evasive, not immune privileged.
    Nat Biotechnol. 2014; 32: 252-260
    • Consentius C.
    • Reinke P.
    • Volk H.D.
    Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo?.
    Regen Med. 2015; 10: 305-315
    • Marquina M.
    • Collado J.A.
    • Perez-Cruz M.
    • Fernandez-Pernas P.
    • Fafian-Labora J.
    • Blanco F.J.
    • Manez R.
    • Arufe M.C.
    • Costa C.
    Biodistribution and Immunogenicity of Allogeneic Mesenchymal Stem Cells in a Rat Model of Intraarticular Chondrocyte Xenotransplantation.
    Front Immunol. 2017; 8: 1465
    • Fazekasova H.
    • Lechler R.
    • Langford K.
    • Lombardi G.
    Placenta-derived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs.
    J Tissue Eng Regen Med. 2011; 5: 684-694
    • Oh W.
    • Kim D.S.
    • Yang Y.S.
    • Lee J.K.
    Immunological properties of umbilical cord blood-derived mesenchymal stromal cells.
    Cell Immunol. 2008; 251: 116-123
    • van Megen K.M.
    • van 't Wout E.T.
    • Lages Motta J.
    • Dekker B.
    • Nikolic T.
    • Roep B.O.
    Activated Mesenchymal Stromal Cells Process and Present Antigens Regulating Adaptive Immunity.
    Front Immunol. 2019; 10: 694
    • Rudolph M.G.
    • Stanfield R.L.
    • Wilson I.A.
    How TCRs bind MHCs, peptides, and coreceptors.
    Annu Rev Immunol. 2006; 24: 419-466
    • Xu J.L.
    • Davis M.M.
    Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities.
    Immunity. 2000; 13: 37-45
    • Ye B.
    • Smerin D.
    • Gao Q.
    • Kang C.
    • Xiong X.
    High-throughput sequencing of the immune repertoire in oncology: Applications for clinical diagnosis, monitoring, and immunotherapies.
    Cancer Lett. 2018; 416: 42-56
    • Schnabel L.V.
    • Pezzanite L.M.
    • Antczak D.F.
    • Felippe M.J.
    • Fortier L.A.
    Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro.
    Stem Cell Res Ther. 2014; 5: 13
    • Racki W.J.
    • Covassin L.
    • Brehm M.
    • Pino S.
    • Ignotz R.
    • Dunn R.
    • Laning J.
    • Graves S.K.
    • Rossini A.A.
    • Shultz L.D.
    • Greiner D.L.
    NOD-scid IL2rgamma(null) mouse model of human skin transplantation and allograft rejection.
    Transplantation. 2010; 89: 527-536
    • Brehm M.A.
    • Kenney L.L.
    • Wiles M.V.
    • Low B.E.
    • Tisch R.M.
    • Burzenski L.
    • Mueller C.
    • Greiner D.L.
    • Shultz L.D.
    Lack of acute xenogeneic graft- versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression.
    FASEB J. 2019; 33: 3137-3151
    • Meisel R.
    • Zibert A.
    • Laryea M.
    • Gobel U.
    • Daubener W.
    • Dilloo D.
    Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation.
    Blood. 2004; 103: 4619-4621
    • Mukonoweshuro B.
    • Brown C.J.
    • Fisher J.
    • Ingham E.
    Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells.
    J Tissue Eng. 2014; 52041731414534255
    • Ziegler S.F.
    • Ramsdell F.
    • Alderson M.R.
    The activation antigen CD69.
    Stem Cells. 1994; 12: 456-465
    • Heather J.M.
    • Ismail M.
    • Oakes T.
    • Chain B.
    High-throughput sequencing of the T-cell receptor repertoire: pitfalls and opportunities.
    Brief Bioinform. 2018; 19: 554-565
    • Chen H.
    • Zou M.
    • Teng D.
    • Hu Y.
    • Zhang J.
    • He W.
    Profiling the pattern of the human T-cell receptor gammadelta complementary determinant region 3 repertoire in patients with lung carcinoma via high-throughput sequencing analysis.
    Cell Mol Immunol. 2019; 16: 250-259
    • Chen H.
    • Zou M.
    • Teng D.
    • Zhang J.
    • He W.
    Characterization of the diversity of T cell receptor gammadelta complementary determinant region 3 in human peripheral blood by Immune Repertoire Sequencing.
    J Immunol Methods. 2017; 443: 9-17
    • Jung D.
    • Alt F.W.
    Unraveling V(D)J recombination; insights into gene regulation.
    Cell. 2004; 116: 299-311
    • Cappello P.
    • Rolla S.
    • Chiarle R.
    • Principe M.
    • Cavallo F.
    • Perconti G.
    • Feo S.
    • Giovarelli M.
    • Novelli F.
    Vaccination with ENO1 DNA prolongs survival of genetically engineered mice with pancreatic cancer.
    Gastroenterology. 2013; 144: 1098-1106
    • Zhu W.
    • Li H.
    • Yu Y.
    • Chen J.
    • Chen X.
    • Ren F.
    • Ren Z.
    • Cui G.
    Enolase-1 serves as a biomarker of diagnosis and prognosis in hepatocellular carcinoma patients.
    Cancer Manag Res. 2018; 10: 5735-5745
    • Ye Y.
    • Kuhn C.
    • Kosters M.
    • Arnold G.J.
    • Ishikawa-Ankerhold H.
    • Schulz C.
    • Rogenhofer N.
    • Thaler C.J.
    • Mahner S.
    • Frohlich T.
    • Jeschke U.
    • von Schonfeldt V.
    Anti alpha-enolase antibody is a novel autoimmune biomarker for unexplained recurrent miscarriages.
    EBioMedicine. 2019; 41: 610-622
    • Jung D.W.
    • Kim W.H.
    • Park S.H.
    • Lee J.
    • Kim J.
    • Su D.
    • Ha H.H.
    • Chang Y.T.
    • Williams D.R.
    A unique small molecule inhibitor of enolase clarifies its role in fundamental biological processes.
    ACS Chem Biol. 2013; 8: 1271-1282
    • Cho H.
    • Um J.
    • Lee J.H.
    • Kim W.H.
    • Kang W.S.
    • Kim S.H.
    • Ha H.H.
    • Kim Y.C.
    • Ahn Y.K.
    • Jung D.W.
    • Williams D.R.
    ENOblock, a unique small molecule inhibitor of the non-glycolytic functions of enolase, alleviates the symptoms of type 2 diabetes.
    Sci Rep. 2017; 7: 44186
    • Isakova I.A.
    • Dufour J.
    • Lanclos C.
    • Bruhn J.
    • Phinney D.G.
    Cell-dose-dependent increases in circulating levels of immune effector cells in rhesus macaques following intracranial injection of allogeneic MSCs.
    Exp Hematol. 2010; 38 (e1): 957-967
    • Poncelet A.J.
    • Hiel A.L.
    • Vercruysse J.
    • Hermans D.
    • Zech F.
    • Gianello P.
    Intracardiac allogeneic mesenchymal stem cell transplantation elicits neo-angiogenesis in a fully immunocompetent ischaemic swine model.
    Eur J Cardiothorac Surg. 2010; 38: 781-787
    • Campeau P.M.
    • Rafei M.
    • Francois M.
    • Birman E.
    • Forner K.A.
    • Galipeau J.
    Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients.
    Mol Ther. 2009; 17: 369-372
    • Badillo A.T.
    • Beggs K.J.
    • Javazon E.H.
    • Tebbets J.C.
    • Flake A.W.
    Murine bone marrow stromal progenitor cells elicit an in vivo cellular and humoral alloimmune response.
    Biol Blood Marrow Transplant. 2007; 13: 412-422
    • Zhao T.
    • Zhang Z.N.
    • Westenskow P.D.
    • Todorova D.
    • Hu Z.
    • Lin T.
    • Rong Z.
    • Kim J.
    • He J.
    • Wang M.
    • Clegg D.O.
    • Yang Y.G.
    • Zhang K.
    • Friedlander M.
    • Xu Y.
    Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells.
    Cell Stem Cell. 2015; 17: 353-359
    • Prasanna S.J.
    • Gopalakrishnan D.
    • Shankar S.R.
    • Vasandan A.B.
    Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially.
    PLoS One. 2010; 5: e9016
    • Raicevic G.
    • Najar M.
    • Najimi M.
    • El Taghdouini A.
    • van Grunsven L.A.
    • Sokal E.
    • Toungouz M.
    Influence of inflammation on the immunological profile of adult-derived human liver mesenchymal stromal cells and stellate cells.
    Cytotherapy. 2015; 17: 174-185
    • Merimi M.
    • Buyl K.
    • Daassi D.
    • Rodrigues R.M.
    • Melki R.
    • Lewalle P.
    • Vanhaecke T.
    • Fahmi H.
    • Rogiers V.
    • Lagneaux L.
    • De Kock J.
    • Najar M.
    Transcriptional Profile of Cytokines, Regulatory Mediators and TLR in Mesenchymal Stromal Cells after Inflammatory Signaling and Cell-Passaging.
    Int J Mol Sci. 2021; 22: 7309
    • Amann E.M.
    • Gross A.
    • Rojewski M.T.
    • Kestler H.A.
    • Kalbitz M.
    • Brenner R.E.
    • Huber-Lang M.
    • Schrezenmeier H.
    Inflammatory response of mesenchymal stromal cells after in vivo exposure with selected trauma-related factors and polytrauma serum.
    PLoS One. 2019; 14e0216862
    • Maffioli E.
    • Nonnis S.
    • Angioni R.
    • Santagata F.
    • Cali B.
    • Zanotti L.
    • Negri A.
    • Viola A.
    • Tedeschi G.
    Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines.
    J Proteomics. 2017; 166: 115-126
    • Stagg J.
    • Pommey S.
    • Eliopoulos N.
    • Galipeau J.
    Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell.
    Blood. 2006; 107: 2570-2577
    • Francois M.
    • Romieu-Mourez R.
    • Stock-Martineau S.
    • Boivin M.N.
    • Bramson J.L.
    • Galipeau J.
    Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties.
    Blood. 2009; 114: 2632-2638
    • Wold F.
    • Ballou C.E.
    Studies on the enzyme enolase. I. Equilibrium studies.
    J Biol Chem. 1957; 227: 301-312
    • Didiasova M.
    • Schaefer L.
    • Wygrecka M.
    When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments.
    Front Cell Dev Biol. 2019; 7: 61
    • Plow E.F.
    • Das R.
    Enolase-1 as a plasminogen receptor.
    Blood. 2009; 113: 5371-5372
    • Ji H.
    • Wang J.
    • Guo J.
    • Li Y.
    • Lian S.
    • Guo W.
    • Yang H.
    • Kong F.
    • Zhen L.
    • Guo L.
    • Liu Y.
    Progress in the biological function of alpha-enolase.
    Anim Nutr. 2016; 2: 12-17
    • Gerstner C.
    • Dubnovitsky A.
    • Sandin C.
    • Kozhukh G.
    • Uchtenhagen H.
    • James E.A.
    • Ronnelid J.
    • Ytterberg A.J.
    • Pieper J.
    • Reed E.
    • Tandre K.
    • Rieck M.
    • Zubarev R.A.
    • Ronnblom L.
    • Sandalova T.
    • Buckner J.H.
    • Achour A.
    • Malmstrom V.
    Functional and Structural Characterization of a Novel HLA-DRB1*04:01-Restricted alpha-Enolase T Cell Epitope in Rheumatoid Arthritis.
    Front Immunol. 2016; 7: 494
    • Chu Yaya
    • et al.
    Targeting CD20+ Aggressive B-cell Non–Hodgkin Lymphoma by Anti-CD20 CAR mRNA-Modified Expanded Natural Killer Cells In Vitro and in NSG Mice.
    Cancer Immunology Research. 2015; https://doi.org/10.1158/2326-6066.CIR-14-0114
View full text