Advertisement
Review article| Volume 24, ISSUE 6, P567-576, June 2022

Download started.

Ok

CAR T targets and microenvironmental barriers of osteosarcoma

  • Jiawen Zhu
    Affiliations
    School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong Province, China
    Search for articles by this author
  • Nafeisha· Simayi
    Affiliations
    Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
    Search for articles by this author
  • Rongxue Wan
    Correspondence
    Corresponding author: Rongxue Wan and Wenhua Huang, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong Province, China. Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong Province, China.Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China.
    Affiliations
    Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong Province, China

    Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
    Search for articles by this author
  • Wenhua Huang
    Correspondence
    Corresponding author: Rongxue Wan and Wenhua Huang, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong Province, China. Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong Province, China.Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China.
    Affiliations
    School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong Province, China

    Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong Province, China

    Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
    Search for articles by this author
Published:February 19, 2022DOI:https://doi.org/10.1016/j.jcyt.2021.12.010

      Abstract

      Osteosarcoma (OS) is one of the most common malignancies in children and adolescents. Multimodal chemotherapy and aggressive surgical resection have improved the prognosis of patients with osteosarcoma. However, the prognosis of OS patients with unresectable advanced tumors, distant metastasis or chemotherapy is still poor. Chimeric antigen receptor (CAR) T cells have achieved remarkable success in the treatment of hematologic malignancies, injecting new vitality into the field of adoptive cell therapy. However, the efficacy in solid tumors has been largely limited. The reason for the poor curative effect of solid tumors is mainly the heterogeneity of solid tumor antigen, immune escape, tumor microenvironment barrier, resistance of immunosuppressive cells and inhibitory factors, which lead to the obstruction of CAR T cell infiltration and the aggravation of failure. Potential antigenic targets for osteosarcoma CAR T cell therapy are under continuous exploration. Some of the antigenic targets, such as anti-HER2-CAR T cells, have achieved good results in preclinical studies, and some of them have entered clinical studies and achieved certain clinical effects. In this review, we discuss the research progress of potential antigen targets and osteosarcoma microenvironment of CAR T cells in the treatment of osteosarcoma.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zhou Y
        • Yang D
        • Yang Q
        • et al.
        Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma[J].
        Nature Communications. 2020; 11https://doi.org/10.1038/s41467-020-20059-6
        • Pingping B
        • Yuhong Z
        • Weiqi L
        • et al.
        Incidence and Mortality of Sarcomas in Shanghai, China, During 2002-2014[J].
        Front Oncol. 2019; 9: 662https://doi.org/10.3389/fonc.2019.00662
        • Ottaviani G
        • Jaffe N
        The Epidemiology of Osteosarcoma[M].
        Springer US, Boston, MA2009: 3-13
        • Jafari F
        • Javdansirat S
        • Sanaie S
        • et al.
        Osteosarcoma: A comprehensive review of management and treatment strategies[J].
        Annals of Diagnostic Pathology. 2020; 49151654https://doi.org/10.1016/j.anndiagpath.2020.151654
        • Wang S
        • Wei H
        • Huang Z
        • et al.
        Epidermal growth factor receptor promotes tumor progression and contributes to gemcitabine resistance in osteosarcoma[J].
        Acta biochimica et biophysica Sinica. 2021; 53: 317-324https://doi.org/10.1093/abbs/gmaa177
        • Fernandez L
        • Metais J Y
        • Escudero A
        • et al.
        Memory T Cells Expressing an NKG2D-CAR Efficiently Target Osteosarcoma Cells[J].
        Clin Cancer Res. 2017; 23: 5824-5835https://doi.org/10.1158/1078-0432.CCR-17-0075
        • Hamieh M
        • Dobrin A
        • Cabriolu A
        • et al.
        CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape[J].
        Nature (London). 2019; 568: 112-116https://doi.org/10.1038/s41586-019-1054-1
        • Dufva O
        • Koski J
        • Maliniemi P
        • et al.
        Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity[J].
        Blood. 2020; 135: 597-609https://doi.org/10.1182/blood.2019002121
        • Annesley C E
        • Summers C
        • Ceppi F
        • et al.
        The Evolution and Future of CAR T Cells for B-Cell Acute Lymphoblastic Leukemia[J].
        Clinical pharmacology and therapeutics. 2018; 103: 591-598https://doi.org/10.1002/cpt.950
        • Maude S L
        • Laetsch T W
        • Buechner J
        • et al.
        Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia[J].
        New England Journal of Medicine. 2018; 378: 439-448https://doi.org/10.1056/NEJMoa1709866
        • Locke F L
        • Ghobadi A
        • Jacobson C A
        • et al.
        Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J].
        Lancet Oncol. 2019; 20: 31-42https://doi.org/10.1016/S1470-2045(18)30864-7
        • June C H
        • Sadelain M.
        Chimeric Antigen Receptor Therapy[J].
        New England Journal of Medicine. 2018; 379: 64-73https://doi.org/10.1056/NEJMra1706169
        • Ye B
        • Stary C M
        • Li X
        • et al.
        Engineering chimeric antigen receptor-T cells for cancer treatment[J].
        Molecular cancer. 2018; 17: 32https://doi.org/10.1186/s12943-018-0814-0
        • Bousquet M
        • Noirot C
        • Accadbled F
        • et al.
        Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations[J].
        Ann Oncol. 2016; 27: 738-744https://doi.org/10.1093/annonc/mdw009
        • Haen S P
        • Loffler M W
        • Rammensee H G
        • et al.
        Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire[J].
        Nat Rev Clin Oncol. 2020; 17: 595-610https://doi.org/10.1038/s41571-020-0387-x
        • Kumagai S
        • Koyama S
        • Nishikawa H.
        Antitumour immunity regulated by aberrant ERBB family signalling[J].
        Nat Rev Cancer. 2021; 21: 181-197https://doi.org/10.1038/s41568-020-00322-0
        • Yuan Y
        • Wang Y
        • Liu Z
        • et al.
        MAT2B promotes proliferation and inhibits apoptosis in osteosarcoma by targeting epidermal growth factor receptor and proliferating cell nuclear antigen[J].
        Int J Oncol. 2019; 54: 2019-2029https://doi.org/10.3892/ijo.2019.4764
        • Wang S
        • Zhong G
        • Wang X
        • et al.
        Prognostic significance of the expression of HER family members in primary osteosarcoma[J].
        Oncology letters. 2018; 16: 2185-2194https://doi.org/10.3892/ol.2018.8931
        • Chen Z
        • Zhao G
        • Zhang Y
        • et al.
        MiR-199b-5p promotes malignant progression of osteosarcoma by regulating HER2[J].
        J BUON. 2018; 23: 1816-1824
        • Tabak S A
        • Khalifa S E
        • Fathy Y.
        HER-2 Immunohistochemical Expression in Bone Sarcomas: A New Hope for Osteosarcoma Patients[J].
        Open Access Maced J Med Sci. 2018; 6: 1555-1560https://doi.org/10.3889/oamjms.2018.318
        • Zhang Q
        • Liu F
        • Wang B
        • et al.
        HER-2 expression in biopsy and surgical specimen on prognosis of osteosarcoma: A systematic review and meta-analysis of 16 studies[J].
        Medicine (Baltimore). 2016; 95: e3661https://doi.org/10.1097/MD.0000000000003661
        • Ahmed N
        • Salsman V S
        • Yvon E
        • et al.
        Immunotherapy for Osteosarcoma: Genetic Modification of T cells Overcomes Low Levels of Tumor Antigen Expression[J].
        Molecular therapy. 2009; 17: 1779-1787https://doi.org/10.1038/mt.2009.133
        • Rainusso N
        • Brawley V S
        • Ghazi A
        • et al.
        Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma[J].
        Cancer Gene Ther. 2012; 19: 212-217https://doi.org/10.1038/cgt.2011.83
        • Ahmed N
        • Brawley V S
        • Hegde M
        • et al.
        Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma[J].
        J Clin Oncol. 2015; 33: 1688-1696https://doi.org/10.1200/JCO.2014.58.0225
        • Dobrenkov K
        • Ostrovnaya I
        • Gu J
        • et al.
        Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults[J].
        Pediatric blood & cancer. 2016; 63: 1780-1785https://doi.org/10.1002/pbc.26097
        • Roth M
        • Linkowski M
        • Tarim J
        • et al.
        Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma[J].
        Cancer. 2014; 120: 548-554https://doi.org/10.1002/cncr.28461
        • Shibuya H
        • Hamamura K
        • Hotta H
        • et al.
        Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3[J].
        Cancer science. 2012; 103: 1656-1664https://doi.org/10.1111/j.1349-7006.2012.02344.x
        • Long A H
        • Highfill S L
        • Cui Y
        • et al.
        Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas[J].
        Cancer Immunol Res. 2016; 4: 869-880https://doi.org/10.1158/2326-6066.CIR-15-0230
        • Tobin R P
        • Jordan K R
        • Robinson W A
        • et al.
        Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with Ipilimumab[J].
        International immunopharmacology. 2018; 63: 282-291https://doi.org/10.1016/j.intimp.2018.08.007
        • Chulanetra M
        • Morchang A
        • Sayour E
        • et al.
        GD2 chimeric antigen receptor modified T cells in synergy with sub-toxic level of doxorubicin targeting osteosarcomas[J].
        Am J Cancer Res. 2020; 10: 674-687
        • Tao L
        • Huang G
        • Wang R
        • et al.
        Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway[J].
        Sci Rep. 2016; 6: 38408https://doi.org/10.1038/srep38408
        • Liu T
        • Ma Q
        • Zhang Y
        • et al.
        Interleukin-11 receptor alpha is overexpressed in human osteosarcoma, and near-infrared-labeled IL-11Ralpha imaging agent could detect osteosarcoma in mouse tumor xenografts[J].
        Tumour Biol. 2015; 36: 2369-2375https://doi.org/10.1007/s13277-014-2844-6
        • Lewis V O
        • Devarajan E
        • Cardo-Vila M
        • et al.
        BMTP-11 is active in preclinical models of human osteosarcoma and a candidate targeted drug for clinical translation[J].
        Proc Natl Acad Sci U S A. 2017; 114: 8065-8070https://doi.org/10.1073/pnas.1704173114
        • Huang G
        • Yu L
        • Cooper L J
        • et al.
        Genetically modified T cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases[J].
        Cancer Res. 2012; 72: 271-281https://doi.org/10.1158/0008-5472.CAN-11-2778
        • Onnis B
        • Fer N
        • Rapisarda A
        • et al.
        Autocrine production of IL-1 1 mediates tumorigenicity in hypoxic cancer cells[J].
        The Journal of Clinical Investigation. 2013; 123: 1615-1629https://doi.org/10.1172/JCI59623
        • Huang X
        • Park H
        • Greene J
        • et al.
        IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas[J].
        PLoS One. 2015; 10e133152https://doi.org/10.1371/journal.pone.0133152
        • Cao Y
        • Roth M
        • Piperdi S
        • et al.
        Insulin-like growth factor 1 receptor and response to anti-IGF1R antibody therapy in osteosarcoma[J].
        PLoS One. 2014; 9e106249https://doi.org/10.1371/journal.pone.0106249
        • Hua H
        • Kong Q
        • Yin J
        • et al.
        Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy[J].
        Journal of hematology and oncology. 2020; 13: 64https://doi.org/10.1186/s13045-020-00904-3
        • Saleh R R
        • Antrás J F
        • Peinado P
        • et al.
        Prognostic value of receptor tyrosine kinase-like orphan receptor (ROR) family in cancer: A meta-analysis[J].
        Cancer treatment reviews. 2019; 77: 11-19https://doi.org/10.1016/j.ctrv.2019.05.006
        • Dai B
        • Shen Y
        • Yan T
        • et al.
        Wnt5a/ROR1 activates DAAM1 and promotes the migration in osteosarcoma cells[J].
        Oncology reports. 2020; 43: 601-608https://doi.org/10.3892/or.2019.7424
        • Spear P
        • Wu M
        • Sentman M
        • et al.
        NKG2D ligands as therapeutic targets[J].
        Cancer immunity. 2013; 13: 8
        • Barber A
        • Rynda A
        • Sentman C.L.
        Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment[J].
        J Immunol. 2009; 183: 6939-6947https://doi.org/10.4049/jimmunol.0902000
        • Hsu K
        • Middlemiss S
        • Saletta F
        • et al.
        Chimeric Antigen Receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours[J].
        Cancer Gene Ther. 2021; 28: 321-334https://doi.org/10.1038/s41417-020-00221-4
        • Posthumadeboer J
        • Piersma S R
        • Pham T V
        • et al.
        Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery[J].
        Br J Cancer. 2013; 109: 2142-2154https://doi.org/10.1038/bjc.2013.578
        • Fritsche-Guenther R
        • Noske A
        • Ungethum U
        • et al.
        De novo expression of EphA2 in osteosarcoma modulates activation of the mitogenic signalling pathway[J].
        Histopathology. 2010; 57: 836-850https://doi.org/10.1111/j.1365-2559.2010.03713.x
        • Sainz-Jaspeado M
        • Huertas-Martinez J
        • Lagares-Tena L
        • et al.
        EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1[J].
        PLoS One. 2013; 8: e71449https://doi.org/10.1371/journal.pone.0071449
        • Garcia-Monclus S
        • Lopez-Alemany R
        • Almacellas-Rabaiget O
        • et al.
        EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma[J].
        Int J Cancer. 2018; 143: 1188-1201https://doi.org/10.1002/ijc.31405
        • Wesa A K
        • Herrem C J
        • Mandic M
        • et al.
        Enhancement in specific CD8+ T cell recognition of EphA2+ tumors in vitro and in vivo after treatment with ligand agonists[J].
        J Immunol. 2008; 181: 7721-7727https://doi.org/10.4049/jimmunol.181.11.7721
        • Lee Y
        • Martin-Orozco N
        • Zheng P
        • et al.
        Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function[J].
        Cell research. 2017; 27: 1034-1045https://doi.org/10.1038/cr.2017.90
        • Wang L
        • Zhang Q
        • Chen W
        • et al.
        B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis[J].
        PLoS One. 2013; 8: e70689https://doi.org/10.1371/journal.pone.0070689
        • Majzner R G
        • Theruvath J L
        • Nellan A
        • et al.
        CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors[J].
        Clin Cancer Res. 2019; 25: 2560-2574https://doi.org/10.1158/1078-0432.CCR-18-0432
        • Darvishi B
        • Boroumandieh S
        • Majidzadeh-A K
        • et al.
        The role of activated leukocyte cell adhesion molecule (ALCAM) in cancer progression, invasion, metastasis and recurrence: A novel cancer stem cell marker and tumor-specific prognostic marker[J].
        Experimental and molecular pathology. 2020; 115104443https://doi.org/10.1016/j.yexmp.2020.104443
        • Federman N
        • Chan J
        • Nagy J O
        • et al.
        Enhanced growth inhibition of osteosarcoma by cytotoxic polymerized liposomal nanoparticles targeting the alcam cell surface receptor[J].
        Sarcoma. 2012; 2012126906https://doi.org/10.1155/2012/126906
        • Wang Y
        • Yu W
        • Zhu J
        • et al.
        Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma[J].
        J Exp Clin Cancer Res. 2019; 38: 168https://doi.org/10.1186/s13046-019-1147-6
        • Cheung A
        • Bax H J
        • Josephs D H
        • et al.
        Targeting folate receptor alpha for cancer treatment[J].
        Oncotarget. 2016; 7: 52553-52574https://doi.org/10.18632/oncotarget.9651
        • Yang R
        • Kolb E A
        • Qin J
        • et al.
        The folate receptor alpha is frequently overexpressed in osteosarcoma samples and plays a role in the uptake of the physiologic substrate 5-methyltetrahydrofolate[J].
        Clin Cancer Res. 2007; 13: 2557-2567https://doi.org/10.1158/1078-0432.CCR-06-1343
        • Endo-Munoz L
        • Evdokiou A
        • Saunders N A
        The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis[J].
        Biochim Biophys Acta. 2012; 1826: 434-442https://doi.org/10.1016/j.bbcan.2012.07.003
        • Lu Y J
        • Chu H
        • Wheeler L W
        • et al.
        Preclinical Evaluation of Bispecific Adaptor Molecule Controlled Folate Receptor CAR-T Cell Therapy With Special Focus on Pediatric Malignancies[J].
        Frontiers in oncology. 2019; 9: 151https://doi.org/10.3389/fonc.2019.00151
        • Corre I
        • Verrecchia F
        • Crenn V
        • et al.
        The Osteosarcoma Microenvironment: A Complex But Targetable Ecosystem[J].
        Cells. 2020; 9https://doi.org/10.3390/cells9040976
        • Renema N
        • Navet B
        • Heymann M
        • et al.
        RANK–RANKL signalling in cancer[J].
        Bioscience Reports. 2016; 36https://doi.org/10.1042/BSR20160150
        • Alfranca A
        • Martinez-Cruzado L
        • Tornin J
        • et al.
        Bone microenvironment signals in osteosarcoma development[J].
        Cell Mol Life Sci. 2015; 72: 3097-3113https://doi.org/10.1007/s00018-015-1918-y
        • Lamora A
        • Talbot J
        • Mullard M
        • et al.
        TGF-beta Signaling in Bone Remodeling and Osteosarcoma Progression[J].
        J Clin Med. 2016; 5https://doi.org/10.3390/jcm5110096
        • Marley K
        • Bracha S
        • Seguin B.
        Osteoprotegerin activates osteosarcoma cells that co-express RANK and RANKL[J].
        Experimental Cell Research. 2015; 338: 32-38https://doi.org/10.1016/j.yexcr.2015.08.001
        • Senthilkumar R
        • Lee H.W.
        CD137L- and RANKL-mediated reverse signals inhibit osteoclastogenesis and T lymphocyte proliferation[J].
        Immunobiology. 2009; 214: 153-161https://doi.org/10.1016/j.imbio.2008.05.001
        • Chen Y
        • Di Grappa M A
        • Molyneux S D
        • et al.
        RANKL blockade prevents and treats aggressive osteosarcomas[J].
        Science translational medicine. 2015; 7: 197r-317rhttps://doi.org/10.1126/scitranslmed.aad0295
        • Janssens K
        • Dijke P T
        • Janssens S
        • et al.
        Transforming Growth Factor-β1 to the Bone[J].
        Endocrine Reviews. 2005; 26: 743-774https://doi.org/10.1210/er.2004-0001
        • Juárez P
        • Guise T.A.
        TGF-β in cancer and bone: Implications for treatment of bone metastases[J].
        Bone. 2011; 48: 23-29https://doi.org/10.1016/j.bone.2010.08.004
        • Maeda S
        • Hayashi M
        • Komiya S
        • et al.
        Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells[J].
        EMBO J. 2004; 23: 552-563https://doi.org/10.1038/sj.emboj.7600067
        • Lamora A
        • Talbot J
        • Bougras G
        • et al.
        Overexpression of smad7 blocks primary tumor growth and lung metastasis development in osteosarcoma[J].
        Clinical cancer research. 2014; 20: 5097-5112https://doi.org/10.1158/1078-0432.CCR-13-3191
        • Verrecchia F
        • Redini F.
        Transforming Growth Factor-beta Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment[J].
        Front Oncol. 2018; 8: 133https://doi.org/10.3389/fonc.2018.00133
        • Tang N
        • Cheng C
        • Zhang X
        • et al.
        TGF-beta inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors[J].
        JCI Insight. 2020; 5https://doi.org/10.1172/jci.insight.133977
        • Ornitz D M
        • Marie P J
        Fibroblast growth factor signaling in skeletal development and disease[J].
        GENES & DEVELOPMENT. 2015; 29: 1463-1486https://doi.org/10.1101/gad.266551.115
        • Shimizu T
        • Ishikawa T
        • Iwai S
        • et al.
        Fibroblast growth factor-2 is an important factor that maintains cellular immaturity and contributes to aggressiveness of osteosarcoma[J].
        Molecular cancer research. 2012; 10: 454-468https://doi.org/10.1158/1541-7786.MCR-11-0347
        • Li X
        • Dong S.
        Histone demethylase JMJD2B and JMJD2C induce fibroblast growth factor 2: mediated tumorigenesis of osteosarcoma[J].
        Med Oncol. 2015; 32: 53https://doi.org/10.1007/s12032-015-0503-4
        • Zhou W
        • Zheng H
        • Du X
        • et al.
        Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients[J].
        Cancer biology & medicine. 2016; 13: 260-268https://doi.org/10.20892/j.issn.2095-3941.2015.0102
        • Weekes D
        • Kashima T G
        • Zandueta C
        • et al.
        Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1[J].
        Oncogene. 2016; 35: 2852-2861https://doi.org/10.1038/onc.2015.344
        • Byrd V M
        • Ballard D W
        • Miller G G
        • et al.
        Fibroblast Growth Factor-1 (FGF-1) Enhances IL-2 Production and Nuclear Translocation of NF-kB in FGF Receptor-Bearing Jurkat T Cells[J].
        Journal of Immunology. 1999; 10: 5853-5859
        • Coppola C
        • Hopkins B
        • Huhn S
        • et al.
        Investigation of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4 + T Cells[J].
        International journal of molecular sciences. 2020; 21: 7814https://doi.org/10.3390/ijms21217814
        • Matsuoka K
        • Bakiri L
        • Wolff L I
        • et al.
        Wnt signaling and Loxl2 promote aggressive osteosarcoma[J].
        Cell Res. 2020; 30: 885-901https://doi.org/10.1038/s41422-020-0370-1
        • Goldstein S D
        • Trucco M
        • Bautista G W
        • et al.
        A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model[J].
        Oncotarget. 2016; 7: 21114-21123https://doi.org/10.18632/oncotarget.8522
        • Singla A
        • Wang J
        • Yang R
        • et al.
        Wnt Signaling in Osteosarcoma[J].
        Advances in Experimental Medicine and Biology. 2020; 1258: 125-139https://doi.org/10.1007/978-3-030-43085-6_8
        • Kim K H
        • Seol H J
        • Kim E H
        • et al.
        Wnt/β-catenin signaling is a key downstream mediator of MET signaling in glioblastoma stem cells[J].
        Neuro-oncology (Charlottesville, Va.). 2013; 15: 161-171https://doi.org/10.1093/neuonc/nos299
        • Patane S
        • Avnet S
        • Corso S
        • et al.
        MET overexpression turns human primary osteoblasts into osteosarcomas[J].
        Cancer research (Chicago, Ill.). 2006; 66: 4750-4757https://doi.org/10.1158/0008-5472.CAN-05-4422
        • Yuan X
        • Sun Z
        • Yuan Q
        • et al.
        Dual-function chimeric antigen receptor T cells targeting c-Met and PD-1 exhibit potent anti-tumor efficacy in solid tumors[J].
        Invest New Drugs. 2021; 39: 34-51https://doi.org/10.1007/s10637-020-00978-3
        • Zheng Y
        • Wang G
        • Chen R
        • et al.
        Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications[J].
        Stem cell research & therapy. 2018; 9: 22https://doi.org/10.1186/s13287-018-0780-x
        • Baroncelli M
        • van der Eerden B
        • Chatterji S
        • et al.
        Human Osteoblast-Derived Extracellular Matrix with High Homology to Bone Proteome Is Osteopromotive[J].
        Tissue Eng Part A. 2018; 24: 1377-1389https://doi.org/10.1089/ten.TEA.2017.0448
        • Klotzsche-von Ameln A
        • Prade I
        • Grosser M
        • et al.
        PHD4 stimulates tumor angiogenesis in osteosarcoma cells via TGF-α[J].
        Molecular cancer research. 2013; 11: 1337-1348https://doi.org/10.1158/1541-7786.MCR-13-0201
        • Lim A R
        • Rathmell W K
        • Rathmell J C
        The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy[J].
        eLife. 2020; 9https://doi.org/10.7554/eLife.55185
        • Ohba T
        • Cates J M
        • Cole H A
        • et al.
        Autocrine VEGF/VEGFR1 signaling in a subpopulation of cells associates with aggressive osteosarcoma[J].
        Mol Cancer Res. 2014; 12: 1100-1111https://doi.org/10.1158/1541-7786.MCR-14-0037
        • Liu K
        • Ren T
        • Huang Y
        • et al.
        Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma[J].
        Cell Death Dis. 2017; 8: e3015https://doi.org/10.1038/cddis.2017.422
        • Liao Y
        • Tsai H
        • Chou P
        • et al.
        CCL3 promotes angiogenesis by dysregulation of miR-374b/VEGF-A axis in human osteosarcoma cells[J].
        Oncotarget. 2016; 7: 4310-4325https://doi.org/10.18632/oncotarget.6708
        • Wang S W
        • Liu S C
        • Sun H L
        • et al.
        CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment[J].
        Carcinogenesis. 2015; 36: 104-114https://doi.org/10.1093/carcin/bgu218
        • Wang L H
        • Tsai H C
        • Cheng Y C
        • et al.
        CTGF promotes osteosarcoma angiogenesis by regulating miR-543/angiopoietin 2 signaling[J].
        Cancer Lett. 2017; 391: 28-37https://doi.org/10.1016/j.canlet.2017.01.013
        • Gao S
        • Cheng C
        • Chen H
        • et al.
        IGF1 3’UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29 family in osteosarcoma[J].
        J Mol Histol. 2016; 47: 135-143https://doi.org/10.1007/s10735-016-9659-2
        • Tzeng H E
        • Tsai C H
        • Chang Z L
        • et al.
        Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma[J].
        Biochem Pharmacol. 2013; 85: 531-540https://doi.org/10.1016/j.bcp.2012.11.021
        • Segaliny A I
        • Mohamadi A
        • Dizier B
        • et al.
        Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment[J].
        Int J Cancer. 2015; 137: 73-85https://doi.org/10.1002/ijc.29376
        • Gu J
        • Ji Z
        • Li D
        • et al.
        Proliferation inhibition and apoptosis promotion by dual silencing of VEGF and Survivin in human osteosarcoma[J].
        Acta Biochim Biophys Sin (Shanghai). 2019; 51: 59-67https://doi.org/10.1093/abbs/gmy146
        • Englisch A
        • Altvater B
        • Kailayangiri S
        • et al.
        VEGFR2 as a target for CAR T cell therapy of Ewing sarcoma[J].
        Pediatric blood & cancer. 2020; 67: e28313https://doi.org/10.1002/pbc.28313
        • Inagaki Y
        • Hookway E
        • Williams KA
        • et al.
        Dendritic and mast cell involvement in the inflammatory response to primary malignant bone tumours[J].
        Clinical sarcoma research. 2016; 6: 13https://doi.org/10.1186/s13569-016-0053-3
        • Heymann M F
        • Lezot F
        • Heymann D.
        The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma[J].
        Cell Immunol. 2019; 343103711https://doi.org/10.1016/j.cellimm.2017.10.011
        • Dumars C
        • Ngyuen J
        • Gaultier A
        • et al.
        Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma[J].
        Oncotarget. 2016; 7: 78343-78354https://doi.org/10.18632/oncotarget.13055
        • Buddingh E P
        • Kuijjer M L
        • Duim R A J
        • et al.
        Tumor-Infiltrating Macrophages are Associated with Metastasis Suppression in High-Grade Osteosarcoma: A Rationale for Treatment with Macrophage Activating Agents[J].
        Clinical Cancer Research. 2011; 17: 2110-2119https://doi.org/10.1158/1078-0432.CCR-10-2047
        • Lewis C E
        • Pollard J.W
        Distinct role of macrophages in different tumor microenvironments[J].
        Cancer research (Chicago, Ill.). 2006; 66: 605-612https://doi.org/10.1158/0008-5472.CAN-05-4005
        • Noy R
        • Pollard J.W.
        Tumor-Associated Macrophages: From Mechanisms to Therapy[J].
        Immunity. 2014; 41: 49-61https://doi.org/10.1016/j.immuni.2014.06.010
        • Liu T
        • Fang X
        • Ding Z
        • et al.
        Pre-operative lymphocyte-to-monocyte ratio as a predictor of overall survival in patients suffering from osteosarcoma[J].
        FEBS open bio. 2015; 5: 682-687https://doi.org/10.1016/j.fob.2015.08.002
        • Li X
        • Chen Y
        • Liu X
        • et al.
        Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients[J].
        International immunopharmacology. 2017; 44: 153-159https://doi.org/10.1016/j.intimp.2017.01.006
        • Shan T
        • Chen S
        • Chen X
        • et al.
        M2‑TAM subsets altered by lactic acid promote T‑cell apoptosis through the PD‑L1/PD‑1 pathway[J].
        Oncology reports. 2020; 44: 1885-1894https://doi.org/10.3892/or.2020.7767
        • Fritzsching B
        • Fellenberg J
        • Moskovszky L
        • et al.
        CD8(+)/FOXP3(+)-ratio in osteosarcoma microenvironment separates survivors from non-survivors: a multicenter validated retrospective study[J].
        Oncoimmunology. 2015; 4e990800https://doi.org/10.4161/2162402X.2014.990800
        • Mochizuki K
        • Kawana S
        • Yamada S
        • et al.
        Various checkpoint molecules, and tumor-infiltrating lymphocytes in common pediatric solid tumors: Possibilities for novel immunotherapy[J].
        Pediatric hematology and oncology. 2019; 36: 17-27https://doi.org/10.1080/08880018.2019.1578843
        • Koirala P
        • Roth M E
        • Gill J
        • et al.
        HHLA2, a member of the B7 family, is expressed in human osteosarcoma and is associated with metastases and worse survival[J].
        Scientific reports. 2016; 6: 31154https://doi.org/10.1038/srep31154
        • Zhao R
        • Chinai J M
        • Buhl S
        • et al.
        HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function[J].
        Proceedings of the National Academy of Sciences - PNAS. 2013; 110: 9879-9884https://doi.org/10.1073/pnas.1303524110
        • Bhatt R S
        • Berjis A
        • Konge J C
        • et al.
        KIR3DL3 Is an Inhibitory Receptor for HHLA2 that Mediates an Alternative Immunoinhibitory Pathway to PD1[J].
        Cancer Immunology Research. 2021; 9: 156-169https://doi.org/10.1158/2326-6066.CIR-20-0315
        • Pende D
        • Falco M
        • Vitale M
        • et al.
        Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation[J].
        Frontiers in immunology. 2019; 10: 1179https://doi.org/10.3389/fimmu.2019.01179
        • Mochizuki Y
        • Tazawa H
        • Demiya K
        • et al.
        Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma[J].
        Cancer Immunol Immunother. 2021; 70: 1405-1417https://doi.org/10.1007/s00262-020-02774-7
        • Wang C
        • Li M
        • Wei R
        • et al.
        Adoptive transfer of TILs plus anti-PD1 therapy: An alternative combination therapy for treating metastatic osteosarcoma[J].
        Journal of bone oncology. 2020; 25100332https://doi.org/10.1016/j.jbo.2020.100332
      View full text