Advertisement
FULL-LENGTH ARTICLE | Basic Research| Volume 24, ISSUE 6, P597-607, June 2022

Download started.

Ok

Dental pulp stem cell-derived extracellular matrix: autologous tool boosting bone regeneration

Published:March 15, 2022DOI:https://doi.org/10.1016/j.jcyt.2022.02.002

      Abstract

      Background aims

      To facilitate artificial bone construct integration into a patient's body, scaffolds are enriched with different biologically active molecules. Among various scaffold decoration techniques, coating surfaces with cell-derived extracellular matrix (ECM) is a rapidly growing field of research. In this study, for the first time, this technology was applied using primary dental pulp stem cells (DPSCs) and tested for use in artificial bone tissue construction.

      Methods

      Rat DPSCs were grown on three-dimensional-printed porous polylactic acid scaffolds for 7 days. After the predetermined time, samples were decellularized, and the remaining ECM detailed proteomic analysis was performed. Further, DPSC-secreated ECM impact to mesenchymal stromal cells (MSC) behaviour as well as its role in osteoregeneration induction were analysed.

      Results

      It was identified that DPSC-specific ECM protein network ornamenting surface-enhanced MSC attachment, migration and proliferation and even promoted spontaneous stem cell osteogenesis. This protein network also demonstrated angiogenic properties and did not stimulate MSCs to secrete molecules associated with scaffold rejection. With regard to bone defects, DPSC-derived ECM recruited endogenous stem cells, initiating the bone self-healing process. Thus, the DPSC-secreted ECM network was able to significantly enhance artificial bone construct integration and induce successful tissue regeneration.

      Conclusions

      DPSC-derived ECM can be a perfect tool for decoration of various biomaterials in the context of bone tissue engineering.

      Graphical Abstract

      KeyWords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ansari M.
        Bone tissue regeneration: biology, strategies and interface studies.
        Prog. Biomater. 2019; 8: 223-237
        • Dimitriou R.
        • Jones E.
        • McGonagle D.
        • Giannoudis P.V.
        Bone regeneration: current concepts and future directions.
        BMC Med. 2011; 9: 66
        • De Witte T.-M.
        • Fratila-Apachitei L.E.
        • Zadpoor A.A.
        • Peppas N.A.
        Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices.
        Regen. Biomater. 2018; 5: 197-211
        • Chen S.
        • Guo Y.
        • Liu R.
        • Wu S.
        • Fang J.
        • Huang B.
        • Li Z.
        • Chen Z.
        • Chen Z.
        Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration.
        Colloids Surfaces B Biointerfaces. 2018; 164: 58-69
        • Ho-Shui-Ling A.
        • Bolander J.
        • Rustom L.E.
        • Johnson A.W.
        • Luyten F.P.
        • Picart C.
        Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives.
        Biomaterials. 2018; 180: 143-162
        • Roseti L.
        • Parisi V.
        • Petretta M.
        • Cavallo C.
        • Desando G.
        • Bartolotti I.
        • Grigolo B.
        Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.
        Mater. Sci. Eng. C. 2017; 78: 1246-1262
        • Laurencin C.
        • Khan Y.
        • El-Amin S.F.
        Bone graft substitutes.
        Expert Rev. Med. Devices. 2006; 3: 49-57
        • Ghassemi T.
        • Shahroodi A.
        • Ebrahimzadeh M.H.
        • Mousavian A.
        • Movaffagh J.
        • Moradi A.
        Current Concepts in Scaffolding for Bone Tissue Engineering.
        Arch. Bone Jt. Surg. 2018; 6: 90-99
        • Santo V.E.
        • Gomes M.E.
        • Mano J.F.
        • Reis R.L.
        Controlled release strategies for bone, cartilage, and osteochondral engineering-part i: Recapitulation of native tissue healing and variables for the design of delivery systems.
        Tissue Eng. Part B Rev. 2013; 19: 308-326
        • Gerstenfeld L.C.
        • Cullinane D.M.
        • Barnes G.L.
        • Graves D.T.
        • Einhorn T.A.
        Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation.
        J. Cell. Biochem. 2003; 88: 873-884
        • Kaigler D.
        • Wang Z.
        • Horger K.
        • Mooney D.J.
        • Krebsbach P.H.
        VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects.
        J. Bone Miner. Res. 2006; 21: 735-744
        • Lin X.
        • Shanmugasundaram S.
        • Liu Y.
        • Derrien A.
        • Nurminskaya M.
        • Zamora P.O.
        B2A peptide induces chondrogenic differentiation in vitro and enhances cartilage repair in rats.
        J. Orthop. Res. 2012; 30: 1221-1228
        • Lindley E.M.
        • Guerra F.A.
        • Krauser J.T.
        • Matos S.M.
        • Burger E.L.
        • Patel V.V
        Small peptide (P-15) bone substitute efficacy in a rabbit cancellous bone model.
        J. Biomed. Mater. Res. B. Appl. Biomater. 2010; 94: 463-468
        • Oh S.
        • Moon K.S.
        • Lee S.H.
        Effect of RGD peptide-coated TiO2 nanotubes on the attachment, proliferation, and functionality of bone-related cells.
        J. Nanomater. 2013; 2013: 1-11https://doi.org/10.1155/2013/965864
        • Hum J.
        • Boccaccini A.R.
        Collagen as coating material for 45S5 bioactive glass-based scaffolds for bone tissue engineering.
        Int. J. Mol. Sci. 2018; 19: 1807https://doi.org/10.3390/ijms19061807
        • Mohamadyar-Toupkanlou F.
        • Vasheghani-Farahani E.
        • Hanaee-Ahvaz H.
        • Soleimani M.
        • Dodel M.
        • Havasi P.
        • Ardeshirylajimi A.
        • Taherzadeh E.S.
        Osteogenic Differentiation of MSCs on Fibronectin-Coated and nHA-Modified Scaffolds.
        ASAIO J. 2017; 63: 684-691
        • Ying X.
        • Sun L.
        • Chen X.
        • Xu H.
        • Guo X.
        • Chen H.
        • Hong J.
        • Cheng S.
        • Peng L.
        Silibinin promotes osteoblast differentiation of human bone marrow stromal cells via bone morphogenetic protein signaling.
        Eur. J. Pharmacol. 2013; 721: 225-230
        • Gao Y.H.
        • Yamaguchi M.
        Suppressive Effect of Genistein on Rat Bone Osteoclasts: Apoptosis Is Induced through Ca2+ Signaling.
        Biol. Pharm. Bull. 1999; 22: 805-809
        • Zhou Y.
        • Wu Y.
        • Jiang X.
        • Zhang X.
        • Xia L.
        • Lin K.
        • Xu Y.
        The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells.
        PLoS One. 2015; 10e0129605
        • Wu Y.
        • Cao L.
        • Xia L.
        • Wu Q.
        • Wang J.
        • Wang X.
        • Xu L.
        • Zhou Y.
        • Xu Y.
        • Jiang X.
        Evaluation of Osteogenesis and Angiogenesis of Icariin in Local Controlled Release and Systemic Delivery for Calvarial Defect in Ovariectomized Rats.
        Sci. Rep. 2017; 7: 5077
        • Kutys M.L.
        • Doyle A.D.
        • Yamada K.M.
        Regulation of cell adhesion and migration by cell-derived matrices.
        Exp. Cell Res. 2013; 319: 2434-2439
        • Kim B.
        • Ventura R.
        • Lee B.-T.
        Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
        J. Tissue Eng. Regen. Med. 2018; 12: e1256-e1267
        • Kim Y.S.
        • Majid M.
        • Melchiorri A.J.
        • Mikos A.G.
        Applications of decellularized extracellular matrix in bone and cartilage tissue engineering.
        Bioeng. Transl. Med. 2019; 4: 83-95
        • Liao J.
        • Guo X.
        • Grande-Allen K.J.
        • Kasper F.K.
        • Mikos A.G.
        Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering.
        Biomaterials. 2010; 31: 8911-8920
        • Liao J.
        • Guo X.
        • Nelson D.
        • Kasper F.K.
        • Mikos A.G.
        Modulation of osteogenic properties of biodegradable polymer/extracellular matrix scaffolds generated with a flow perfusion bioreactor.
        Acta Biomater. 2010; 6: 2386-2393
        • Burgio F.
        • Rimmer N.
        • Pieles U.
        • Buschmann J.
        • Beaufils-Hugot M.
        Characterization and in ovo vascularization of a 3D-printed hydroxyapatite scaffold with different extracellular matrix coatings under perfusion culture.
        Biol. Open. 2018; 7bio034488
        • Harvestine J.N.
        • Orbay H.
        • Chen J.Y.
        • Sahar D.E.
        • Leach J.K.
        Cell-secreted extracellular matrix, independent of cell source, promotes the osteogenic differentiation of human stromal vascular fraction.
        J. Mater. Chem. B. 2018; 6: 4104-4115
        • Li M.
        • Zhang A.
        • Li J.
        • Zhou J.
        • Zheng Y.
        • Zhang C.
        • Xia D.
        • Mao H.
        • Zhao J.
        Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration.
        Bioact. Mater. 2020; 5: 938-948
        • Zhang C.
        • Li M.
        • Zhu J.
        • Luo F.
        • Zhao J.
        Enhanced bone repair induced by human adipose-derived stem cells on osteogenic extracellular matrix ornamented small intestinal submucosa.
        Regen. Med. 2017; 12: 541-552
        • Parmaksiz M.
        • Elçin A.E.
        • Elçin Y.M.
        Decellularized Cell Culture ECMs Act as Cell Differentiation Inducers.
        Stem Cell Rev. Reports. 2020; 16: 569-584
        • Tamaki Y.
        • Nakahara T.
        • Ishikawa H.
        • Sato S.
        In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow.
        Odontology. 2013; 101: 121-132
        • Alge D.L.
        • Zhou D.
        • Adams L.L.
        • Wyss B.K.
        • Shadday M.D.
        • Woods E.J.
        • Chu T.M.G.
        • Goebel W.S.
        Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model.
        J. Tissue Eng. Regen. Med. 2010; 4: 73-81
        • Logovskaya L.V
        • Bukharova T.B.
        • Volkov A.V
        • Vikhrova E.B.
        • Makhnach O.V
        • Goldshtein D.V
        Induction of Osteogenic Differentiation of Multipotent Mesenchymal Stromal Cells from Human Adipose Tissue.
        Bulletin of Experimental Biology and Medicine. 2013; 155: 145-150https://doi.org/10.1007/s10517-013-2100-x
        • Mori G.
        • Brunetti G.
        • Oranger A.
        • Carbone C.
        • Ballini A.
        • Muzio L.Lo
        • Colucci S.
        • Mori C.
        • Grassi F.R.
        • Grano M.
        Dental pulp stem cells: osteogenic differentiation and gene expression.
        Ann. N. Y. Acad. Sci. 2011; 1237: 47-52
        • Pierdomenico L.
        • Bonsi L.
        • Calvitti M.
        • Rondelli D.
        • Arpinati M.
        • Chirumbolo G.
        • Becchetti E.
        • Marchionni C.
        • Alviano F.
        • Fossati V.
        • Staffolani N.
        • Franchina M.
        • Grossi A.
        • Bagnara G.P.
        Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp.
        Transplantation. 2005; 80: 836-842
        • Alksne M.
        • Kalvaityte M.
        • Simoliunas E.
        • Rinkunaite I.
        • Gendviliene I.
        • Locs J.
        • Rutkunas V.
        • Bukelskiene V.
        In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration.
        J. Mech. Behav. Biomed. Mater. 2020; 104103641
        • Wiśniewski J.R.
        • Zougman A.
        • Nagaraj N.
        • Mann M.
        Universal sample preparation method for proteome analysis.
        Nat. Methods. 2009; 6: 359-362
        • Naba A.
        • Clauser K.R.
        • Ding H.
        • Whittaker C.A.
        • Carr S.A.
        • Hynes R.O.
        The extracellular matrix: Tools and insights for the “omics” era.
        Matrix Biol. 2016; 49: 10-24
        • Šimoliūnas E.
        • Kantakevičius P.
        • Kalvaitytė M.
        • Bagdzevičiūtė L.
        • Alksnė M.
        • Baltriukienė D.
        DNA-DAPI Interaction-Based Method for Cell Proliferation Rate Evaluation in 3D Structures.
        Curr. Issues Mol. Biol. 2021; 43: 251-263
        • Alksne M.
        • Simoliunas E.
        • Kalvaityte M.
        • Skliutas E.
        • Rinkunaite I.
        • Gendviliene I.
        • et al.
        The effect of larger than cell diameter polylactic acid surface patterns on osteogenic differentiation of rat dental pulp stem cells.
        J. Biomed. Mater. Res. - Part A. 2019; 107: 174-186https://doi.org/10.1002/jbm.a.36547
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.
        Methods. 2001; 25: 402-408
        • Faul F.
        • Erdfelder E.
        • Lang A.G.
        • Buchner A.
        G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
        Behav. Res. Methods, Psychonomic Society Inc. 2007; 39: 175-191
        • Gendviliene I.
        • Simoliunas E.
        • Alksne M.
        • Dibart S.
        • Jasiuniene E.
        • Cicenas V.
        • Jacobs R.
        • Bukelskiene V.
        • Rutkunas V.
        Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds.
        Eur. Cells Mater. 2021; 41: 204-215
        • Hynes R.O.
        • Naba A.
        Overview of the matrisome-An inventory of extracellular matrix constituents and functions.
        Cold Spring Harb. Perspect. Biol. 2012; 4: a004903https://doi.org/10.1101/cshperspect.a004903
        • Frantz C.
        • Stewart K.M.
        • Weaver V.M.
        The extracellular matrix at a glance.
        J. Cell Sci. 2010; 123: 4195-4200
        • Pati F.
        • Jang J.
        • Ha D.-H.
        • Won Kim S.
        • Rhie J.-W.
        • Shim J.-H.
        • Kim D.-H.
        • Cho D.-W.
        Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink.
        Nat. Commun. 2014; 5: 3935
        • Sobreiro-Almeida R.
        • Quinteira R.
        • Neves N.M.
        Renal Regeneration: The Role of Extracellular Matrix and Current ECM-Based Tissue Engineered Strategies.
        Adv. Healthc. Mater. 2021; 102100160
        • Crapo P.M.
        • Gilbert T.W.
        • Badylak S.F.
        An overview of tissue and whole organ decellularization processes.
        Biomaterials. 2011; 32: 3233-3243
        • Hillebrandt K.H.
        • Everwien H.
        • Haep N.
        • Keshi E.
        • Pratschke J.
        • Sauer I.M.
        Strategies based on organ decellularization and recellularization.
        Transpl. Int. 2019; 32: 571-585
        • Thibault R.A.
        • Mikos A.G.
        • Kasper F.K.
        Protein and mineral composition of osteogenic extracellular matrix constructs generated with a flow perfusion bioreactor.
        Biomacromolecules. 2011; 12: 4204-4212
        • Baroncelli M.
        • van der Eerden B.C.
        • Kan Y.-Y.
        • Alves R.D.
        • Demmers J.A.
        • van de Peppel J.
        • van Leeuwen J.P.
        Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal stromal cell osteogenic differentiation and mineralization.
        J. Cell. Physiol. 2018; 233: 387-395
        • Ragelle H.
        • Naba A.
        • Larson B.L.
        • Zhou F.
        • Prijić M.
        • Whittaker C.A.
        • Del Rosario A.
        • Langer R.
        • Hynes R.O.
        • Anderson D.G.
        Comprehensive proteomic characterization of stem cell-derived extracellular matrices.
        Biomaterials. 2017; 128: 147-159
        • Canalis E.
        • Parker K.
        • Zanotti S.
        Gremlin1 is required for skeletal development and postnatal skeletal homeostasis.
        J. Cell. Physiol. 2012; 227: 269-277
        • Cai L.
        • Xiong X.
        • Kong X.
        • Xie J.
        The Role of the Lysyl Oxidases in Tissue Repair and Remodeling: A Concise Review.
        Tissue Eng. Regen. Med. 2017; 14: 15-30
        • Gartland A.
        • Erler J.T.
        • Cox T.R.
        The role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis.
        J. Bone Oncol. 2016; 5: 100-103
        • Alksne M.
        • Simoliunas E.
        • Kalvaityte M.
        • Skliutas E.
        • Rinkunaite I.
        • Gendviliene I.
        • Baltriukiene D.
        • Rutkunas V.
        • Bukelskiene V.
        The effect of larger than cell diameter polylactic acid surface patterns on osteogenic differentiation of rat dental pulp stem cells.
        J. Biomed. Mater. Res. Part A. 2019; 107: 174-186
        • Polo-Corrales L.
        • Latorre-Esteves M.
        • Ramirez-Vick J.E.
        Scaffold design for bone regeneration.
        J. Nanosci. Nanotechnol. 2014; 14: 15-56
        • Holle A.W.
        • McIntyre A.J.
        • Kehe J.
        • Wijesekara P.
        • Young J.L.
        • Vincent L.G.
        • Engler A.J.
        High content image analysis of focal adhesion-dependent mechanosensitive stem cell differentiation.
        Integr. Biol. (United Kingdom). 2016; 8: 1049-1058
        • Kumar A.
        • Nune K.C.
        • Misra R.D.K.
        Biological functionality of extracellular matrix-ornamented three-dimensional printed hydroxyapatite scaffolds.
        J. Biomed. Mater. Res. Part A. 2016; 104: 1343-1351
        • Provenzano P.P.
        • Keely P.J.
        Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling.
        J. Cell Sci. 2011; 124: 1195-1205
        • Pin A.L.
        • Houle F.
        • Fournier P.
        • Guillonneau M.
        • Paquet É.R.
        • Simard M.J.
        • Royal I.
        • Huot J.
        Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by vascular endothelial growth factor (VEGF)-induced inhibition of miR-196a expression.
        J. Biol. Chem. 2012; 287: 30541-30551
        • Bizzarro V.
        • Belvedere R.
        • Dal Piaz F.
        • Parente L.
        • Petrella A.
        Annexin A1 Induces Skeletal Muscle Cell Migration Acting through Formyl Peptide Receptors.
        PLoS One. 2012; 7: e48246
        • de Jong O.G.
        • van der Waals L.M.
        • Kools F.R.W.
        • Verhaar M.C.
        • van Balkom B.W.M.
        Lysyl oxidase-like 2 is a regulator of angiogenesis through modulation of endothelial-to-mesenchymal transition.
        J. Cell. Physiol. 2019; 234: 10260-10269
        • Huang H.
        • Huang H.
        • Li Y.
        • Liu M.
        • Shi Y.
        • Chi Y.
        • Zhang T.
        Gremlin induces cell proliferation and extra cellular matrix accumulation in mouse mesangial cells exposed to high glucose via the ERK1/2 pathway.
        BMC Nephrol. 2013; 14: 33
        • Te Hsiao C.
        • Cheng H.W.
        • Huang C.M.
        • Li H.R.
        • Ou M.H.
        • Huang J.R.
        • Khoo K.H.
        • Yu H.W.
        • Chen Y.Q.
        • Wang Y.K.
        • Chiou A.
        • Kuo J.C.
        Fibronectin in cell adhesion and migration via N-glycosylation.
        Oncotarget. 2017; 8: 70653-70668
        • Maté-Sánchez de Val J.E.
        • Mazón P.
        • Calvo-Guirado J.L.
        • Ruiz R.A.D.
        • Ramírez Fernández M.P.
        • Negri B.
        • Abboud M.
        • De Aza P.N.
        Comparison of three hydroxyapatite/β-tricalcium phosphate/collagen ceramic scaffolds: an in vivo study.
        J. Biomed. Mater. Res. Part A. 2014; 102: 1037-1046
        • Hankenson K.D.
        • Dishowitz M.
        • Gray C.
        • Schenker M.
        Angiogenesis in bone regeneration.
        Injury. 2011; 42: 556-561
        • Calabrese G.
        • Giuffrida R.
        • Forte S.
        • Fabbi C.
        • Figallo E.
        • Salvatorelli L.
        • Memeo L.
        • Parenti R.
        • Gulisano M.
        • Gulino R.
        Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite scaffold promote bone augmentation after implantation in the mouse.
        Sci. Rep. 2017; 7: 1-11
        • Xie Y.
        • Sun W.
        • Yan F.
        • Liu H.
        • Deng Z.
        • Cai L.
        Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity.
        Int. J. Nanomedicine. 2019; 14: 6019-6033
        • Wu Z.
        • Meng Z.
        • Wu Q.
        • Zeng D.
        • Guo Z.
        • Yao J.
        • et al.
        Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration.
        J Tissue Eng. 2020; 112041731420967791https://doi.org/10.1177/2041731420967791
        • Diez-Escudero A.
        • Harlin H.
        • Isaksson P.
        • Persson C.
        Porous polylactic acid scaffolds for bone regeneration: a study of additively manufactured triply periodic minimal surfaces and their osteogenic potential.
        J Tissue Eng. 2020; 112041731420956541https://doi.org/10.1177/2041731420956541
        • Liu Y.
        • Chen Z.
        • Cheng H.
        • Chen J.
        • Qian J.
        Gremlin promotes retinal pigmentation epithelial (RPE) cellproliferation, migration and VEGF production via activating VEGFR2-Akt-mTORC2 signaling.
        Oncotarget. 2017; 8: 979-987
        • Stabile H.
        • Mitola S.
        • Moroni E.
        • Belleri M.
        • Nicoli S.
        • Coltrini D.
        • Peri F.
        • Pessi A.
        • Orsatti L.
        • Talamo F.
        • Castronovo V.
        • Waltregny D.
        • Cotelli F.
        • Ribatti D.
        • Presta M.
        Bone morphogenic protein antagonist Drm/gremlin is a novel proangiogenic factor.
        Blood. 2007; 109: 1834-1840
        • Nichol D.
        • Stuhlmann H.
        EGFL7: a unique angiogenic signaling factor in vascular development and disease.
        Blood. 2012; 119: 1345
        • Usuba R.
        • Pauty J.
        • Soncin F.
        • Matsunaga Y.T.
        EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model.
        Biomaterials. 2019; 197: 305-316
      1. J. Charles A Janeway, P. Travers, M. Walport, M.J. Shlomchik, Responses to alloantigens and transplant rejection, (2001). https://www.ncbi.nlm.nih.gov/books/NBK10757/.

        • Tönshoff B.
        Immunosuppressants in Organ Transplantation.
        Handb. Exp. Pharmacol. 2020; 261: 441-469
        • Edri R.
        • Gal I.
        • Noor N.
        • Harel T.
        • Fleischer S.
        • Adadi N.
        • Green O.
        • Shabat D.
        • Heller L.
        • Shapira A.
        • Gat-Viks I.
        • Peer D.
        • Dvir T.
        Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants.
        Adv. Mater. 2019; 311803895
        • Yang F.
        • Niu X.
        • Gu X.
        • Xu C.
        • Wang W.
        • Fan Y.
        Biodegradable Magnesium-Incorporated Poly(l-lactic acid) Microspheres for Manipulation of Drug Release and Alleviation of Inflammatory Response.
        ACS Appl. Mater. Interfaces. 2019; 11: 23546-23557
        • Li D.
        • Sun H.
        • Jiang L.
        • Zhang K.
        • Liu W.
        • Zhu Y.
        • Fangteng J.
        • Shi C.
        • Zhao L.
        • Sun H.
        • Yang B.
        Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation.
        ACS Appl. Mater. Interfaces. 2014; 6: 9402-9410
        • Ma S.
        • Feng X.
        • Liu F.
        • Wang B.
        • Zhang H.
        • Niu X.
        The pro-inflammatory response of macrophages regulated by acid degradation products of poly(lactide-co-glycolide) nanoparticles.
        Eng. Life Sci. 2021; 21: 709-720https://doi.org/10.1002/elsc.202100040
        • Velioglu Z.B.
        • Pulat D.
        • Demirbakan B.
        • Ozcan B.
        • Bayrak E.
        • Erisken C.
        3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization.
        Connect Tissue Res. 2018; 60: 274-282https://doi.org/10.1080/03008207.2018.1499732
        • Zhang B.
        • Wang L.
        • Song P.
        • Pei X.
        • Sun H.
        • Wu L.
        • Zhou C.
        • Wang K.
        • Fan Y.
        • Zhang X.
        3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations.
        Mater. Des. 2021; 201109490
        • Swisher J.F.A.
        • Khatri U.
        • Feldman G.M.
        Annexin A2 is a soluble mediator of macrophage activation.
        J. Leukoc. Biol. 2007; 82: 1174-1184
        • Sugimoto M.A.
        • Vago J.P.
        • Teixeira M.M.
        • Sousa L.P.
        Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance.
        J. Immunol. Res. 2016; 2016: 1-13https://doi.org/10.1155/2016/8239258
        • Leigh L.E.A.
        • Ghebrehiwet B.
        • Perera T.P.S.
        • Bird I.N.
        • Strong P.
        • Kishore U.
        • Reid K.B.M.
        • Eggleton P.
        C1q-mediated chemotaxis by human neutrophils: involvement of gClqR and G-protein signalling mechanisms.
        Biochem. J. 1998; 330: 247-254
        • Claes L.
        • Recknagel S.
        • Ignatius A.
        Fracture healing under healthy and inflammatory conditions.
        Nat. Rev. Rheumatol. 2012; 8: 133-143
        • Schlundt C.
        • El Khassawna T.
        • Serra A.
        • Dienelt A.
        • Wendler S.
        • Schell H.
        • van Rooijen N.
        • Radbruch A.
        • Lucius R.
        • Hartmann S.
        • Duda G.N.
        • Schmidt-Bleek K.
        Macrophages in bone fracture healing: Their essential role in endochondral ossification.
        Bone. 2018; 106: 78-89https://doi.org/10.1016/j.bone.2015.10.019
        • Guo M.
        • James A.W.
        • Kwak J.H.
        • Shen J.
        • Yokoyama K.K.
        • Ting K.
        • et al.
        Cyclophilin A (CypA) Plays Dual Roles in Regulation of Bone Anabolism and Resorption.
        Sci. Rep. 2016; 6: 1-10
        • Liang H.P.H.
        • Xu J.
        • Xue M.
        • Jackson C.
        Matrix metalloproteinases in bone development and pathology: current knowledge and potential clinical utility.
        Met. Med. 2016; 3: 93-102
        • Lorenzetti B.B.
        • Veiga F.H.
        • Canetti C.A.
        • Poole S.
        • Cunha F.Q.
        • Ferreira S.H.
        CINC-1 mediates the sympathetic component of inflammatory mechanical hypersensitivitiy in rats.
        Eur. Cytokine Netw. 2003; 13: 456-461
        • Tanaka T.
        • Narazaki M.
        • Kishimoto T.
        IL-6 in inflammation, immunity, and disease.
        Cold Spring Harb. Perspect. Biol. 2014; 6: 16295-16296
        • Aldinucci D.
        • Colombatti A.
        The inflammatory chemokine CCL5 and cancer progression.
        Mediators Inflamm. 2014; 2014: 1-12https://doi.org/10.1155/2014/292376
        • Perrier S.
        • Darakhshan F.
        • Hajduch E.
        IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde?.
        FEBS Lett. 2006; 580: 6289-6294
        • Sawant K.V.
        • Poluri K.M.
        • Dutta A.K.
        • Sepuru K.M.
        • Troshkina A.
        • Garofalo R.P.
        • Rajarathnam K.
        Chemokine CXCL1 mediated neutrophil recruitment: role of glycosaminoglycan interactions.
        Sci. Rep. 2016; 6: 1-8
        • Ichikawa A.
        • Kuba K.
        • Morita M.
        • Chida S.
        • Tezuka H.
        • Hara H.
        • Sasaki T.
        • Ohteki T.
        • Ranieri V.M.
        • Dos Santos C.C.
        • Kawaoka Y.
        • Akira S.
        • Luster A.D.
        • Lu B.
        • Penninger J.M.
        • Uhlig S.
        • Slutsky A.S.
        • Imai Y.
        CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin.
        Am. J. Respir. Crit. Care Med. 2013; 187: 65-77
      View full text